MCP Server Setup
This guide explains how to set up and configure an MCP server optimized for infrastructure deployment and DevOps workflows.
What is MCP?
The Model Context Protocol (MCP) server acts as a middleware between LLMs and your development environment, providing:
Context-aware responses
Code analysis capabilities
Integration with development tools
Infrastructure-as-Code validation
Security scanning
Server Setup
Prerequisites
Docker and Docker Compose
4GB RAM minimum
Git
Python 3.8+
Basic Installation
Clone the MCP server repository:
git clone https://github.com/context-labs/mcp-server
cd mcp-server
Create configuration file (config.yaml):
server:
port: 3000
host: "0.0.0.0"
models:
- name: "claude-2"
provider: "anthropic"
config:
api_key: ${ANTHROPIC_API_KEY}
- name: "gpt-4"
provider: "openai"
config:
api_key: ${OPENAI_API_KEY}
tools:
- name: "terraform-validate"
type: "shell"
command: "terraform validate"
- name: "terraform-plan"
type: "shell"
command: "terraform plan"
- name: "aws-check"
type: "shell"
command: "aws sts get-caller-identity"
Start the server:
docker-compose up -d
Infrastructure Tools Integration
Terraform Integration
tools:
- name: "terraform-workflow"
type: "composite"
steps:
- name: "validate"
command: "terraform validate"
- name: "security-scan"
command: "tfsec ."
- name: "plan"
command: "terraform plan"
- name: "terraform-docs"
type: "shell"
command: "terraform-docs markdown ."
Cloud Provider Integration
tools:
- name: "aws-validate"
type: "composite"
steps:
- name: "credentials-check"
command: "aws sts get-caller-identity"
- name: "policy-validation"
command: "aws iam simulate-custom-policy"
- name: "azure-validate"
type: "composite"
steps:
- name: "login-check"
command: "az account show"
- name: "policy-check"
command: "az policy state list"
Security Configuration
API Key Management
security:
key_rotation:
enabled: true
interval: "7d"
auth:
type: "jwt"
secret: ${JWT_SECRET}
rate_limiting:
enabled: true
requests_per_minute: 60
Logging Configuration
logging:
level: "info"
format: "json"
outputs:
- type: "file"
path: "/var/log/mcp-server.log"
- type: "cloudwatch"
group: "mcp-logs"
region: "us-west-2"
Best Practices
Resource Management
Monitor memory usage
Implement rate limiting
Use connection pooling
Scale horizontally when needed
Security
Regular key rotation
JWT authentication
Request validation
Input sanitization
Monitoring
monitoring: prometheus: enabled: true port: 9090 alerts: - name: "high_memory" threshold: "85%" action: "notify"
Example Use Cases
Infrastructure Validation
from mcp_client import MCPClient
client = MCPClient("http://localhost:3000")
result = client.validate_infrastructure("""
resource "aws_s3_bucket" "example" {
bucket = "my-bucket"
acl = "private"
}
""")
Security Scanning
scan_result = client.security_scan({
"type": "terraform",
"path": "./infrastructure",
"checks": ["CKV_AWS_*"]
})
Troubleshooting
Connection Issues
Check network configurations
Verify port mappings
Validate TLS certificates
Performance Issues
Monitor resource usage
Check logging levels
Analyze request patterns
Tool Integration Issues
Verify tool installations
Check PATH configurations
Validate permissions
Resources
Last updated