AIops Overview

Workflow Automation

LLM-Assisted Incident Response

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
  name: llm-incident-response
spec:
  entrypoint: analyze-incident
  templates:
  - name: analyze-incident
    steps:
    - - name: collect-logs
        template: gather-logs
    - - name: analyze
        template: llm-analysis
    - - name: suggest-remediation
        template: generate-fix

  - name: llm-analysis
    container:
      image: aiops-toolkit:latest
      command: [python, analyze.py]
      env:
      - name: OPENAI_API_KEY
        valueFrom:
          secretKeyRef:
            name: llm-secrets
            key: api-key

Predictive Analytics

Infrastructure Scaling

from openai import OpenAI
from prometheus_api_client import PrometheusConnect

def predict_scaling_needs(metrics_data):
    client = OpenAI()
    response = client.chat.completions.create(
        model="gpt-4",
        messages=[
            {
                "role": "system",
                "content": "Analyze infrastructure metrics and recommend scaling actions."
            },
            {
                "role": "user",
                "content": f"Metrics data: {metrics_data}"
            }
        ]
    )
    return response.choices[0].message.content

Code Quality Enhancement

LLM-Powered Code Review

name: LLM Code Review
on: [pull_request]
jobs:
  review:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - name: Code Review
        uses: coderabbitai/ai-pr-reviewer@latest
        with:
          github-token: ${{ secrets.GITHUB_TOKEN }}
          openai-api-key: ${{ secrets.OPENAI_API_KEY }}

Security Analysis

Threat Detection

  • ML-based anomaly detection

  • Pattern recognition

  • Behavioral analysis

  • Automated response

Vulnerability Assessment

  • Code scanning

  • Dependency analysis

  • Configuration review

  • Risk scoring

Performance Optimization

Resource Management

  • Predictive scaling

  • Cost optimization

  • Workload placement

  • Capacity planning

Monitoring Enhancement

  • Anomaly detection

  • Root cause analysis

  • Alert correlation

  • Performance prediction

Best Practices

  1. Model Management

    • Version control

    • Performance monitoring

    • Regular updates

    • Quality assurance

  2. Integration Strategy

    • Incremental adoption

    • Fallback mechanisms

    • Human oversight

    • Feedback loops

  3. Security Considerations

    • Data privacy

    • Model security

    • Access control

    • Audit trails

Last updated