DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Getting Started - Installation and initial setup [BEGINNER]
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
        • AWS Scenarios
        • GCP Scenarios
      • Testing and Validation - Ensuring infrastructure quality
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices - Production-ready implementation strategies
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions - GitHub-based automation workflows
        • Azure Pipelines - Azure DevOps integration
        • GitLab CI - GitLab-based deployment pipelines
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
    • Docker
      • Dockerfile Best Practices
      • Docker Compose
    • Kubernetes
      • CLI Tools - Essential command-line utilities
        • Kubectl
        • Kubens
        • Kubectx
      • Core Concepts
      • Components
      • Best Practices
        • Pod Security
        • Security Monitoring
        • Resource Limits
      • Advanced Features - Beyond the basics [ADVANCED]
        • Service Mesh
        • Ingress Controllers
          • NGINX
          • Traefik
          • Kong
          • Gloo Edge
      • Troubleshooting - Diagnosing and resolving common issues
        • Pod Troubleshooting Commands
      • Enterprise Architecture
      • Health Management
      • Security & Compliance
      • Virtual Clusters
    • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
    • Serverless Edge
    • IoT Edge Patterns
    • Real-Time Processing
    • Edge AI/ML
    • Security Hardening
    • Observability Patterns
    • Network Optimization
    • Storage Patterns
  • 🔄CI/CD & GitOps
    • CI/CD Overview
    • Continuous Integration
    • Continuous Delivery
      • Deployment Strategies
      • Secrets Management
      • Blue-Green Deployments
      • Deployment Metrics
      • Progressive Delivery
      • Release Management for DevOps/SRE (2025)
    • CI/CD Platforms - Tool selection and implementation
      • Azure DevOps
        • Pipelines
          • Stages
          • Jobs
          • Steps
          • Templates - Reusable pipeline components
          • Extends
          • Service Connections - External service authentication
          • Best Practices for 2025
          • Agents and Runners
          • Third-Party Integrations
          • Azure DevOps CLI
        • Boards & Work Items
      • GitHub Actions
      • GitLab
        • GitLab Runner
        • Real-life scenarios
        • Installation guides
        • Pros and Cons
        • Comparison with alternatives
    • GitOps
      • Modern GitOps Practices
      • Flux
        • Overview
        • Progressive Delivery
        • Use GitOps with Flux, GitHub and AKS
  • ☁️Cloud Platforms
    • Cloud Strategy
    • Azure
      • Best Practices
      • Landing Zones
      • Services
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
    • Google Cloud
      • Services
    • Private Cloud
  • 🔐Security & Compliance
    • DevSecOps Overview
    • DevSecOps Pipeline Security
    • DevSecOps
      • Real-life Examples
      • Scanning & Protection - Automated security tooling
        • Dependency Scanning
        • Credential Scanning
        • Container Security Scanning
        • Static Code Analysis
          • Best Practices
          • Tool Integration Guide
          • Pipeline Configuration
      • CI/CD Security
      • Secrets Rotation
    • Supply Chain Security
      • SLSA Framework
      • Binary Authorization
      • Artifact Signing
    • Security Best Practices
      • Threat Modeling
      • Kubernetes Security
    • SecOps
    • Zero Trust Model
    • Cloud Compliance
      • ISO/IEC 27001:2022
      • ISO 22301:2019
      • PCI DSS
      • CSA STAR
    • Security Frameworks
    • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
    • Logging
    • Metrics
    • Tracing
    • Dashboards
    • SLOs and SLAs
    • Observability as Code
    • Pipeline Observability
  • 🧪Testing Strategies
    • Testing Overview
    • Modern Testing Approaches
    • End-to-End Testing
    • Unit Testing
    • Performance Testing
      • Load Testing
    • Fault Injection Testing
    • Integration Testing
    • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
    • Claude
      • Installation Guide
      • Project Guides
      • MCP Server Setup
      • LLM Comparison
    • Ollama
      • Installation Guide
      • Configuration
      • Models and Fine-tuning
      • DevOps Usage
      • Docker Setup
      • GPU Setup
      • Open WebUI
    • Copilot
      • Installation Guide
      • VS Code Integration
      • CLI Usage
    • Gemini
      • Installation Guides - Platform-specific setup
        • Linux Installation
        • WSL Installation
        • NixOS Installation
      • Gemini 2.5 Features
      • Roles and Agents
      • NotebookML Guide
      • Cloud Infrastructure Deployment
      • Summary
  • 💻Development Environment
    • Tools Overview
    • DevOps Tools
    • Operating Systems - Development platforms
      • NixOS
        • Installation
        • Nix Language Guide
        • DevEnv with Nix
        • Cloud Deployments
      • WSL2
        • Distributions
        • Terminal Setup
    • Editor Environments
    • CLI Tools
      • Azure CLI
      • PowerShell
      • Linux Commands
      • YAML Tools
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • 📖Documentation Best Practices
    • Documentation Strategy
    • Project Documentation
    • Release Notes
    • Static Sites
    • Documentation Templates
    • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Recommended Reading
    • Troubleshooting Guide
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Development Setup
    • Development Setup
Powered by GitBook
On this page
Edit on GitHub
  1. Programming Languages

Python

Python is an increasingly popular programming language that has become a go-to choose for many Azure Platform Engineers. Azure is Microsoft's cloud computing platform, offering a wide range of services and tools for building, deploying, and managing applications and services. Here are some reasons why a Platform Engineer working with Azure should learn Python:

  1. Automation: Python has a rich set of libraries that enable the creation of automated scripts and workflows. As a Platform Engineer, you may need to automate various tasks such as deploying infrastructure, configuring services, and managing resources. Python's automation capabilities can help you save time and reduce the risk of manual errors.

  2. Azure SDK for Python: Microsoft provides an Azure SDK for Python, which is a collection of libraries and tools that enable the development of Azure applications in Python. This SDK provides access to all Azure services, making it easier for Platform Engineers to manage and configure their Azure infrastructure using Python.

  3. Data Analysis: Python has a robust set of libraries for data analysis and visualization, such as Pandas and Matplotlib. As a Platform Engineer, you may need to analyze logs, monitor performance, and troubleshoot issues. Python's data analysis capabilities can help you gain insights into your Azure infrastructure and make informed decisions.

  4. Open-Source: Python is an open-source programming language, meaning that it's free to use and has a large community of developers contributing to it. This community has created many libraries and tools that can be used to enhance Azure development, such as Azure Functions, Flask, and Django.

  5. Scalability: Azure is a highly scalable cloud platform, and Python's support for concurrency and asynchronous programming makes it an excellent choice for building scalable applications. Python's asyncio library, for example, enables the creation of high-performance, non-blocking applications that can handle many requests simultaneously.

In conclusion, as an Azure Platform Engineer, learning Python can help you automate tasks, manage resources, analyze data, and build scalable applications. With its rich set of libraries and tools, Python is an excellent choice for Azure development and is quickly becoming a must-know language for many Platform Engineers.

Create a Virtual Machine:

from azure.identity import DefaultAzureCredential
from azure.mgmt.compute import ComputeManagementClient
from azure.mgmt.compute.models import HardwareProfile, NetworkInterfaceReference, \
    OSDisk, StorageAccountTypes, StorageProfile, VirtualHardDisk, VirtualMachine, \
    VirtualMachineSizeTypes, OSProfile, LinuxConfiguration, SshConfiguration, SshPublicKey

credential = DefaultAzureCredential()

compute_client = ComputeManagementClient(
    credential=credential,
    subscription_id='<your-subscription-id>'
)

vm_name = 'my-vm'
location = 'westus2'
rg_name = 'my-resource-group'
vnet_name = 'my-vnet'
subnet_name = 'my-subnet'
username = 'my-username'
password = 'my-password'
ssh_key = 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCx...'

vm_parameters = VirtualMachine(
    location=location,
    hardware_profile=HardwareProfile(vm_size=VirtualMachineSizeTypes.standard_b1s),
    storage_profile=StorageProfile(
        image_reference={
            'publisher': 'Canonical',
            'offer': 'UbuntuServer',
            'sku': '20.04-LTS',
            'version': 'latest'
        },
        os_disk=OSDisk(
            create_option='fromImage',
            managed_disk=VirtualHardDisk(storage_account_type=StorageAccountTypes.standard_lrs)
        )
    ),
    os_profile=OSProfile(
        computer_name=vm_name,
        admin_username=username,
        admin_password=password,
        linux_configuration=LinuxConfiguration(
            disable_password_authentication=True,
            ssh=SshConfiguration(
                public_keys=[
                    SshPublicKey(
                        path='/home/{}/.ssh/authorized_keys'.format(username),
                        key_data=ssh_key
                    )
                ]
            )
        )
    ),
    network_profile={
        'network_interfaces': [
            {
                'id': compute_client.network_interfaces.get(
                    resource_group_name=rg_name,
                    network_interface_name='<your-network-interface-name>'
                ).id,
                'properties': {
                    'primary': True
                }
            }
        ]
    }
)

compute_client.virtual_machines.create_or_update(
    resource_group_name=rg_name,
    vm_name=vm_name,
    parameters=vm_parameters
)
```plaintext

Create an Azure Storage Account:

````python
from azure.identity import DefaultAzureCredential
from azure.mgmt.storage import StorageManagementClient
from azure.mgmt.storage.models import StorageAccountCreateParameters, Sku, SkuName, Kind

credential = DefaultAzureCredential()

storage_client = StorageManagementClient(
    credential=credential,
    subscription_id='<your-subscription-id>'
)

rg_name = 'my-resource-group'
account_name = 'mystorageaccount'
location = 'eastus'
sku = Sku(name=SkuName.standard_lrs)
kind = Kind.storage_v2

account_params = StorageAccountCreateParameters(
    sku=sku,
    kind=kind,
    location=location
)

storage_client.storage_accounts.create(rg_name, account_name, account_params)
```plaintext

3. List Azure Virtual Machines:

```python
from azure.identity import DefaultAzureCredential
from azure.mgmt.compute import ComputeManagementClient

credential = DefaultAzureCredential()

compute_client = ComputeManagementClient(
    credential=credential,
    subscription_id='<your-subscription-id>'
)

rg_name = 'my-resource-group'

vms = compute_client.virtual_machines.list(rg_name)

for vm in vms:
    print(vm.name)
````plaintext

These examples demonstrate how to create a Virtual Machine, create an Azure Storage Account, and list Virtual Machines using Python and the Azure SDK. Of course, there are many more operations you can perform with the SDK, and the documentation provides a comprehensive reference for all available functionality.
PreviousYAML ToolsNextGo

Last updated 4 days ago

📚