Real-Time Processing
Stream Processing Architecture
Kafka Edge Configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: edge-kafka
spec:
kafka:
version: 3.5.1
replicas: 3
resources:
requests:
memory: 2Gi
cpu: "500m"
limits:
memory: 4Gi
cpu: "2"
config:
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.min.isr: 2
default.replication.factor: 3
min.insync.replicas: 2
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
Event Processing
Flink Edge Job
apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
name: edge-processing
spec:
image: flink:1.17
flinkVersion: v1_17
flinkConfiguration:
taskmanager.numberOfTaskSlots: "2"
parallelism.default: "2"
serviceAccount: flink
jobManager:
resource:
memory: "2048m"
cpu: 1
taskManager:
resource:
memory: "2048m"
cpu: 1
job:
jarURI: local:///opt/flink/edge-processor.jar
parallelism: 2
upgradeMode: stateless
Edge Analytics
Vector Configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: vector-config
data:
vector.toml: |
[sources.edge_metrics]
type = "prometheus_scrape"
endpoints = ["http://localhost:9090/metrics"]
scrape_interval_secs = 15
[transforms.edge_processing]
type = "remap"
inputs = ["edge_metrics"]
source = '''
. = parse_json!(.message)
.timestamp = parse_timestamp!(.timestamp, format: "%Y-%m-%d %H:%M:%S")
'''
[sinks.edge_storage]
type = "aws_s3"
inputs = ["edge_processing"]
bucket = "edge-metrics"
compression = "gzip"
encoding.codec = "json"
batch.timeout_secs = 300
Best Practices
Data Processing
Stream windowing
State management
Backpressure handling
Error recovery
Performance Optimization
Resource allocation
Data locality
Caching strategy
Network optimization
Monitoring
Processing latency
Throughput metrics
Error rates
Resource utilization
Reliability
Data persistence
Failover handling
Message guarantees
Recovery procedures
Last updated