Real-Time Processing

Stream Processing Architecture

Kafka Edge Configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: edge-kafka
spec:
  kafka:
    version: 3.5.1
    replicas: 3
    resources:
      requests:
        memory: 2Gi
        cpu: "500m"
      limits:
        memory: 4Gi
        cpu: "2"
    config:
      offsets.topic.replication.factor: 3
      transaction.state.log.replication.factor: 3
      transaction.state.log.min.isr: 2
      default.replication.factor: 3
      min.insync.replicas: 2
    storage:
      type: jbod
      volumes:
      - id: 0
        type: persistent-claim
        size: 100Gi
        deleteClaim: false

Event Processing

Edge Analytics

Vector Configuration

Best Practices

  1. Data Processing

    • Stream windowing

    • State management

    • Backpressure handling

    • Error recovery

  2. Performance Optimization

    • Resource allocation

    • Data locality

    • Caching strategy

    • Network optimization

  3. Monitoring

    • Processing latency

    • Throughput metrics

    • Error rates

    • Resource utilization

  4. Reliability

    • Data persistence

    • Failover handling

    • Message guarantees

    • Recovery procedures

Last updated