Edge AI/ML

Model Optimization

TensorFlow Lite Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
  name: edge-inference
spec:
  replicas: 1
  selector:
    matchLabels:
      app: edge-ml
  template:
    spec:
      containers:
      - name: inference
        image: tensorflow/serving:latest
        resources:
          limits:
            cpu: "2"
            memory: "4Gi"
            nvidia.com/gpu: "1"
        volumeMounts:
        - name: model-store
          mountPath: /models
        env:
        - name: MODEL_NAME
          value: edge_model
        - name: MODEL_BASE_PATH
          value: /models

ONNX Runtime Optimization

Edge Configuration

Model Serving

Triton Inference Server

Best Practices

  1. Model Optimization

    • Quantization

    • Pruning

    • Layer fusion

    • Kernel optimization

  2. Resource Management

    • GPU sharing

    • Memory efficiency

    • Power optimization

    • Thermal management

  3. Monitoring

    • Inference latency

    • Model accuracy

    • Resource usage

    • Health metrics

  4. Deployment Strategy

    • Rolling updates

    • A/B testing

    • Model versioning

    • Fallback handling

Last updated