Edge AI/ML
Model Optimization
TensorFlow Lite Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: edge-inference
spec:
replicas: 1
selector:
matchLabels:
app: edge-ml
template:
spec:
containers:
- name: inference
image: tensorflow/serving:latest
resources:
limits:
cpu: "2"
memory: "4Gi"
nvidia.com/gpu: "1"
volumeMounts:
- name: model-store
mountPath: /models
env:
- name: MODEL_NAME
value: edge_model
- name: MODEL_BASE_PATH
value: /models
ONNX Runtime Optimization
Edge Configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: onnx-config
data:
config.json: |
{
"optimization_level": "all",
"graph_optimization_level": "ORT_ENABLE_ALL",
"inter_op_num_threads": 4,
"intra_op_num_threads": 4,
"execution_mode": "sequential",
"memory": {
"enable_memory_arena": true,
"arena_extend_strategy": "kNextPowerOfTwo"
}
}
Model Serving
Triton Inference Server
apiVersion: serving.kubeflow.org/v1beta1
kind: InferenceService
metadata:
name: edge-model-server
spec:
predictor:
minReplicas: 1
maxReplicas: 3
containers:
- name: triton
image: nvcr.io/nvidia/tritonserver:24.02-py3
args:
- --model-repository=/models
- --strict-model-config=false
resources:
limits:
cpu: "4"
memory: "8Gi"
nvidia.com/gpu: "1"
volumeMounts:
- mountPath: /models
name: model-store
Best Practices
Model Optimization
Quantization
Pruning
Layer fusion
Kernel optimization
Resource Management
GPU sharing
Memory efficiency
Power optimization
Thermal management
Monitoring
Inference latency
Model accuracy
Resource usage
Health metrics
Deployment Strategy
Rolling updates
A/B testing
Model versioning
Fallback handling
Last updated