IoT Edge Patterns
Azure IoT Edge Implementation
Device Configuration
apiVersion: devices.microsoft.com/v1
kind: IoTDevice
metadata:
name: factory-sensor-001
spec:
deviceId: sensor-001
hubName: production-iothub
capabilities:
- type: Edge
authentication:
type: symmetricKey
modules:
- name: temperature-processor
image: mcr.microsoft.com/azureiotedge-temp-processor:1.0
env:
- name: PROCESSING_INTERVAL
value: "30"
- name: edge-ml
image: mcr.microsoft.com/azureiotedge-ml:2.0
createOptions:
HostConfig:
DeviceRequests:
- Count: -1
Driver: nvidia
Capabilities: [[gpu]]
AWS IoT Greengrass
Component Definition
---
RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.EdgeProcessor
ComponentVersion: '1.0.0'
ComponentDescription: Edge data processing component
ComponentPublisher: Example Corp
ComponentConfiguration:
DefaultConfiguration:
processingInterval: 60
batchSize: 100
Manifests:
- Platform:
os: linux
Lifecycle:
Run: |
python3 {artifacts:path}/edge_processor.py
Artifacts:
- URI: s3://bucket/edge_processor.py
Permission:
Execute: OWNER
Edge ML Inference
ONNX Runtime Configuration
apiVersion: apps/v1
kind: Deployment
metadata:
name: edge-inference
spec:
replicas: 1
selector:
matchLabels:
app: ml-inference
template:
spec:
containers:
- name: inference
image: inference-engine:1.0
resources:
limits:
nvidia.com/gpu: 1
env:
- name: MODEL_PATH
value: /models/edge-optimized
- name: INFERENCE_THREADS
value: "2"
- name: BATCH_SIZE
value: "4"
volumeMounts:
- name: models
mountPath: /models
volumes:
- name: models
persistentVolumeClaim:
claimName: model-storage
Best Practices
Device Management
OTA updates
Health monitoring
Configuration management
Device provisioning
Data Processing
Edge filtering
Local aggregation
Data compression
Batch processing
Security
Device authentication
Secure boot
Data encryption
Network isolation
Reliability
Offline operation
Data buffering
Conflict resolution
Failover handling
Last updated