DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Getting Started - Installation and initial setup [BEGINNER]
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
        • AWS Scenarios
        • GCP Scenarios
      • Testing and Validation - Ensuring infrastructure quality
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices - Production-ready implementation strategies
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions - GitHub-based automation workflows
        • Azure Pipelines - Azure DevOps integration
        • GitLab CI - GitLab-based deployment pipelines
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
    • Docker
      • Dockerfile Best Practices
      • Docker Compose
    • Kubernetes
      • CLI Tools - Essential command-line utilities
        • Kubectl
        • Kubens
        • Kubectx
      • Core Concepts
      • Components
      • Best Practices
        • Pod Security
        • Security Monitoring
        • Resource Limits
      • Advanced Features - Beyond the basics [ADVANCED]
        • Service Mesh
        • Ingress Controllers
          • NGINX
          • Traefik
          • Kong
          • Gloo Edge
      • Troubleshooting - Diagnosing and resolving common issues
        • Pod Troubleshooting Commands
      • Enterprise Architecture
      • Health Management
      • Security & Compliance
      • Virtual Clusters
    • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
    • Serverless Edge
    • IoT Edge Patterns
    • Real-Time Processing
    • Edge AI/ML
    • Security Hardening
    • Observability Patterns
    • Network Optimization
    • Storage Patterns
  • 🔄CI/CD & GitOps
    • CI/CD Overview
    • Continuous Integration
    • Continuous Delivery
      • Deployment Strategies
      • Secrets Management
      • Blue-Green Deployments
      • Deployment Metrics
      • Progressive Delivery
      • Release Management for DevOps/SRE (2025)
    • CI/CD Platforms - Tool selection and implementation
      • Azure DevOps
        • Pipelines
          • Stages
          • Jobs
          • Steps
          • Templates - Reusable pipeline components
          • Extends
          • Service Connections - External service authentication
          • Best Practices for 2025
          • Agents and Runners
          • Third-Party Integrations
          • Azure DevOps CLI
        • Boards & Work Items
      • GitHub Actions
      • GitLab
        • GitLab Runner
        • Real-life scenarios
        • Installation guides
        • Pros and Cons
        • Comparison with alternatives
    • GitOps
      • Modern GitOps Practices
      • GitOps Patterns for Multi-Cloud (2025)
      • Flux
        • Overview
        • Progressive Delivery
        • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
    • Git Branching Strategies
    • Component Versioning
    • Kubernetes Manifest Versioning
    • GitLab
    • Creating a Fork
    • Naming Branches
    • Pull Requests
    • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
    • Azure
      • Best Practices
      • Landing Zones
      • Services
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
    • Google Cloud
      • Services
    • Private Cloud
  • 🔐Security & Compliance
    • DevSecOps Overview
    • DevSecOps Pipeline Security
    • DevSecOps
      • Real-life Examples
      • Scanning & Protection - Automated security tooling
        • Dependency Scanning
        • Credential Scanning
        • Container Security Scanning
        • Static Code Analysis
          • Best Practices
          • Tool Integration Guide
          • Pipeline Configuration
      • CI/CD Security
      • Secrets Rotation
    • Supply Chain Security
      • SLSA Framework
      • Binary Authorization
      • Artifact Signing
    • Security Best Practices
      • Threat Modeling
      • Kubernetes Security
    • SecOps
    • Zero Trust Model
    • Cloud Compliance
      • ISO/IEC 27001:2022
      • ISO 22301:2019
      • PCI DSS
      • CSA STAR
    • Security Frameworks
    • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
    • Logging
    • Metrics
    • Tracing
    • Dashboards
    • SLOs and SLAs
    • Observability as Code
    • Pipeline Observability
  • 🧪Testing Strategies
    • Testing Overview
    • Modern Testing Approaches
    • End-to-End Testing
    • Unit Testing
    • Performance Testing
      • Load Testing
    • Fault Injection Testing
    • Integration Testing
    • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
    • Claude
      • Installation Guide
      • Project Guides
      • MCP Server Setup
      • LLM Comparison
    • Ollama
      • Installation Guide
      • Configuration
      • Models and Fine-tuning
      • DevOps Usage
      • Docker Setup
      • GPU Setup
      • Open WebUI
    • Copilot
      • Installation Guide
      • VS Code Integration
      • CLI Usage
    • Gemini
      • Installation Guides - Platform-specific setup
        • Linux Installation
        • WSL Installation
        • NixOS Installation
      • Gemini 2.5 Features
      • Roles and Agents
      • NotebookML Guide
      • Cloud Infrastructure Deployment
      • Summary
  • 💻Development Environment
    • Tools Overview
    • DevOps Tools
    • Operating Systems - Development platforms
      • NixOS
        • Installation
        • Nix Language Guide
        • DevEnv with Nix
        • Cloud Deployments
      • WSL2
        • Distributions
        • Terminal Setup
    • Editor Environments
    • CLI Tools
      • Azure CLI
      • PowerShell
      • Linux Commands
      • YAML Tools
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • 📖Documentation Best Practices
    • Documentation Strategy
    • Project Documentation
    • Release Notes
    • Static Sites
    • Documentation Templates
    • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Recommended Reading
    • Troubleshooting Guide
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Development Setup
    • Development Setup
Powered by GitBook
On this page
  • What is MCP?
  • Server Setup
  • Prerequisites
  • Basic Installation
  • Infrastructure Tools Integration
  • Terraform Integration
  • Cloud Provider Integration
  • Security Configuration
  • API Key Management
  • Logging Configuration
  • Best Practices
  • Example Use Cases
  • Infrastructure Validation
  • Security Scanning
  • Troubleshooting
  • Resources
Edit on GitHub
  1. AI & LLM Integration
  2. Claude

MCP Server Setup

This guide explains how to set up and configure an MCP server optimized for infrastructure deployment and DevOps workflows.

What is MCP?

The Model Context Protocol (MCP) server acts as a middleware between LLMs and your development environment, providing:

  • Context-aware responses

  • Code analysis capabilities

  • Integration with development tools

  • Infrastructure-as-Code validation

  • Security scanning

Server Setup

Prerequisites

  • Docker and Docker Compose

  • 4GB RAM minimum

  • Git

  • Python 3.8+

Basic Installation

  1. Clone the MCP server repository:

git clone https://github.com/context-labs/mcp-server
cd mcp-server
  1. Create configuration file (config.yaml):

server:
  port: 3000
  host: "0.0.0.0"

models:
  - name: "claude-2"
    provider: "anthropic"
    config:
      api_key: ${ANTHROPIC_API_KEY}
  - name: "gpt-4"
    provider: "openai"
    config:
      api_key: ${OPENAI_API_KEY}

tools:
  - name: "terraform-validate"
    type: "shell"
    command: "terraform validate"
  - name: "terraform-plan"
    type: "shell"
    command: "terraform plan"
  - name: "aws-check"
    type: "shell"
    command: "aws sts get-caller-identity"
  1. Start the server:

docker-compose up -d

Infrastructure Tools Integration

Terraform Integration

tools:
  - name: "terraform-workflow"
    type: "composite"
    steps:
      - name: "validate"
        command: "terraform validate"
      - name: "security-scan"
        command: "tfsec ."
      - name: "plan"
        command: "terraform plan"
    
  - name: "terraform-docs"
    type: "shell"
    command: "terraform-docs markdown ."

Cloud Provider Integration

tools:
  - name: "aws-validate"
    type: "composite"
    steps:
      - name: "credentials-check"
        command: "aws sts get-caller-identity"
      - name: "policy-validation"
        command: "aws iam simulate-custom-policy"

  - name: "azure-validate"
    type: "composite"
    steps:
      - name: "login-check"
        command: "az account show"
      - name: "policy-check"
        command: "az policy state list"

Security Configuration

API Key Management

security:
  key_rotation:
    enabled: true
    interval: "7d"
  
  auth:
    type: "jwt"
    secret: ${JWT_SECRET}
    
  rate_limiting:
    enabled: true
    requests_per_minute: 60

Logging Configuration

logging:
  level: "info"
  format: "json"
  outputs:
    - type: "file"
      path: "/var/log/mcp-server.log"
    - type: "cloudwatch"
      group: "mcp-logs"
      region: "us-west-2"

Best Practices

  1. Resource Management

    • Monitor memory usage

    • Implement rate limiting

    • Use connection pooling

    • Scale horizontally when needed

  2. Security

    • Regular key rotation

    • JWT authentication

    • Request validation

    • Input sanitization

  3. Monitoring

    monitoring:
      prometheus:
        enabled: true
        port: 9090
      alerts:
        - name: "high_memory"
          threshold: "85%"
          action: "notify"

Example Use Cases

Infrastructure Validation

from mcp_client import MCPClient

client = MCPClient("http://localhost:3000")
result = client.validate_infrastructure("""
resource "aws_s3_bucket" "example" {
  bucket = "my-bucket"
  acl    = "private"
}
""")

Security Scanning

scan_result = client.security_scan({
    "type": "terraform",
    "path": "./infrastructure",
    "checks": ["CKV_AWS_*"]
})

Troubleshooting

  1. Connection Issues

    • Check network configurations

    • Verify port mappings

    • Validate TLS certificates

  2. Performance Issues

    • Monitor resource usage

    • Check logging levels

    • Analyze request patterns

  3. Tool Integration Issues

    • Verify tool installations

    • Check PATH configurations

    • Validate permissions

Resources

PreviousProject GuidesNextLLM Comparison

Last updated 3 days ago

🧠
MCP Protocol Specification
Infrastructure Validation Guide
Security Best Practices