DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • πŸš€Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • πŸ› οΈInfrastructure as Code (IaC)
    • Terraform
      • Getting Started - Installation and initial setup [BEGINNER]
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
        • AWS Scenarios
        • GCP Scenarios
      • Testing and Validation - Ensuring infrastructure quality
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices - Production-ready implementation strategies
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions - GitHub-based automation workflows
        • Azure Pipelines - Azure DevOps integration
        • GitLab CI - GitLab-based deployment pipelines
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • πŸ’°Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
    • Docker
      • Dockerfile Best Practices
      • Docker Compose
    • Kubernetes
      • CLI Tools - Essential command-line utilities
        • Kubectl
        • Kubens
        • Kubectx
      • Core Concepts
      • Components
      • Best Practices
        • Pod Security
        • Security Monitoring
        • Resource Limits
      • Advanced Features - Beyond the basics [ADVANCED]
        • Service Mesh
        • Ingress Controllers
          • NGINX
          • Traefik
          • Kong
          • Gloo Edge
      • Troubleshooting - Diagnosing and resolving common issues
        • Pod Troubleshooting Commands
      • Enterprise Architecture
      • Health Management
      • Security & Compliance
      • Virtual Clusters
    • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
    • Serverless Edge
    • IoT Edge Patterns
    • Real-Time Processing
    • Edge AI/ML
    • Security Hardening
    • Observability Patterns
    • Network Optimization
    • Storage Patterns
  • πŸ”„CI/CD & GitOps
    • CI/CD Overview
    • Continuous Integration
    • Continuous Delivery
      • Deployment Strategies
      • Secrets Management
      • Blue-Green Deployments
      • Deployment Metrics
      • Progressive Delivery
      • Release Management for DevOps/SRE (2025)
    • CI/CD Platforms - Tool selection and implementation
      • Azure DevOps
        • Pipelines
          • Stages
          • Jobs
          • Steps
          • Templates - Reusable pipeline components
          • Extends
          • Service Connections - External service authentication
          • Best Practices for 2025
          • Agents and Runners
          • Third-Party Integrations
          • Azure DevOps CLI
        • Boards & Work Items
      • GitHub Actions
      • GitLab
        • GitLab Runner
        • Real-life scenarios
        • Installation guides
        • Pros and Cons
        • Comparison with alternatives
    • GitOps
      • Modern GitOps Practices
      • GitOps Patterns for Multi-Cloud (2025)
      • Flux
        • Overview
        • Progressive Delivery
        • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
    • Git Branching Strategies
    • Component Versioning
    • Kubernetes Manifest Versioning
    • GitLab
    • Creating a Fork
    • Naming Branches
    • Pull Requests
    • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
    • Azure
      • Best Practices
      • Landing Zones
      • Services
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
    • Google Cloud
      • Services
    • Private Cloud
  • πŸ”Security & Compliance
    • DevSecOps Overview
    • DevSecOps Pipeline Security
    • DevSecOps
      • Real-life Examples
      • Scanning & Protection - Automated security tooling
        • Dependency Scanning
        • Credential Scanning
        • Container Security Scanning
        • Static Code Analysis
          • Best Practices
          • Tool Integration Guide
          • Pipeline Configuration
      • CI/CD Security
      • Secrets Rotation
    • Supply Chain Security
      • SLSA Framework
      • Binary Authorization
      • Artifact Signing
    • Security Best Practices
      • Threat Modeling
      • Kubernetes Security
    • SecOps
    • Zero Trust Model
    • Cloud Compliance
      • ISO/IEC 27001:2022
      • ISO 22301:2019
      • PCI DSS
      • CSA STAR
    • Security Frameworks
    • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • πŸ”Observability & Monitoring
    • Observability Fundamentals
    • Logging
    • Metrics
    • Tracing
    • Dashboards
    • SLOs and SLAs
    • Observability as Code
    • Pipeline Observability
  • πŸ§ͺTesting Strategies
    • Testing Overview
    • Modern Testing Approaches
    • End-to-End Testing
    • Unit Testing
    • Performance Testing
      • Load Testing
    • Fault Injection Testing
    • Integration Testing
    • Smoke Testing
  • πŸ€–AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
    • Claude
      • Installation Guide
      • Project Guides
      • MCP Server Setup
      • LLM Comparison
    • Ollama
      • Installation Guide
      • Configuration
      • Models and Fine-tuning
      • DevOps Usage
      • Docker Setup
      • GPU Setup
      • Open WebUI
    • Copilot
      • Installation Guide
      • VS Code Integration
      • CLI Usage
    • Gemini
      • Installation Guides - Platform-specific setup
        • Linux Installation
        • WSL Installation
        • NixOS Installation
      • Gemini 2.5 Features
      • Roles and Agents
      • NotebookML Guide
      • Cloud Infrastructure Deployment
      • Summary
  • πŸ’»Development Environment
    • Tools Overview
    • DevOps Tools
    • Operating Systems - Development platforms
      • NixOS
        • Installation
        • Nix Language Guide
        • DevEnv with Nix
        • Cloud Deployments
      • WSL2
        • Distributions
        • Terminal Setup
    • Editor Environments
    • CLI Tools
      • Azure CLI
      • PowerShell
      • Linux Commands
      • YAML Tools
  • πŸ“šProgramming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • πŸ“–Documentation Best Practices
    • Documentation Strategy
    • Project Documentation
    • Release Notes
    • Static Sites
    • Documentation Templates
    • Real-World Examples
  • πŸ“‹Reference Materials
    • Glossary
    • Tool Comparison
    • Recommended Reading
    • Troubleshooting Guide
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Development Setup
    • Development Setup
Powered by GitBook
On this page
  • What is Observability?
  • Pillars of Modern Observability (2025)
  • 1. Logs
  • 2. Metrics
  • 3. Traces
  • 4. Continuous Profiling
  • Real-life Examples
  • E-Commerce Platform Example
  • Financial Services Example
  • Observability Implementation Approaches
  • OpenTelemetry-Based Architecture (2025 Recommended)
  • Pros and Cons of Observability Implementation
  • Pros
  • Cons
  • 2025 Best Practices
  • Related Topics
  • References
Edit on GitHub
  1. Observability & Monitoring

Observability Fundamentals

Building observable systems enables development teams to comprehensively measure how well applications behave in production environments. Modern observability goes beyond monitoring by focusing on understanding complex system behaviors through their outputs.

What is Observability?

Observability originates from control theory, defined as a measure of how well a system's internal states can be inferred from its external outputs. In DevOps and SRE contexts, observability refers to the ability to understand what's happening inside your systems without deploying new code to add more logging or instrumentation.

Observability serves the following key goals:

  • Provide holistic view of the application health across distributed systems

  • Help measure business performance and customer experience metrics

  • Track operational performance and resource efficiency

  • Identify and diagnose failures with reduced mean time to resolution (MTTR)

  • Enable proactive problem detection before users are impacted

Pillars of Modern Observability (2025)

1. Logs

Timestamped records of discrete events that occurred within your systems. Modern logging practices focus on:

  • Structured logging with consistent formats (JSON/OpenTelemetry)

  • Context-enriched logs with trace IDs and user journey information

  • Log sampling strategies for high-volume environments

  • AI-assisted log analysis for anomaly detection

2. Metrics

Time-series data measuring specific values over time. Key advances include:

  • High-cardinality metrics with multiple dimensions

  • Business-aligned metrics tied to user experiences

  • Real-time metric streaming with sub-second granularity

  • Predictive metrics leveraging ML for forecasting trends

3. Traces

Records that track the journey of requests across distributed systems:

  • End-to-end request visualization across service boundaries

  • Automated anomaly detection in trace patterns

  • Root cause analysis through trace comparison

  • Correlation between traces, metrics, and logs

4. Continuous Profiling

System-wide performance profiling as the fourth pillar:

  • Low-overhead application profiling in production

  • Resource optimization through continuous code analysis

  • Memory leak and CPU hotspot detection

  • Performance regression identification

Real-life Examples

E-Commerce Platform Example

Scenario: A major e-commerce platform implemented unified observability to diagnose sporadic checkout failures.

Implementation:

  • Distributed tracing across 200+ microservices

  • Correlation between front-end user actions and backend processes

  • Business metrics tracking checkout conversion rates

  • Cross-service log correlation with trace IDs

Results:

  • Reduced MTTR from 2 hours to 8 minutes

  • Identified a caching issue in the payment processing service

  • Improved checkout conversion rate by 3.2%

  • Proactively detected 87% of issues before customer reports

Financial Services Example

Scenario: A banking system needed to ensure transaction reliability while meeting regulatory requirements.

Implementation:

  • Real-time tracing of all transaction flows

  • Comprehensive audit logs for compliance

  • SLO monitoring for critical transaction paths

  • Synthetic transaction testing with observability integration

Results:

  • 99.999% transaction reliability achievement

  • Compliance evidence automatically generated from observability data

  • Reduced production incidents by 76%

  • Automated alerting based on anomaly detection saved $1.2M annually

Observability Implementation Approaches

OpenTelemetry-Based Architecture (2025 Recommended)

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Applications  │────▢│ OpenTelemetry│────▢│ Observability  β”‚
β”‚ with Auto-    β”‚     β”‚ Collector    β”‚     β”‚ Platform       β”‚
β”‚ Instrumentationβ”‚     β”‚ Pipeline     β”‚     β”‚                β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                                   β”‚
                                                   β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Alert Manager │◀────│ Visualization │◀────│  Data Storage  β”‚
β”‚ & Automation  β”‚     β”‚ & Analysis    β”‚     β”‚  & Processing  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Pros and Cons of Observability Implementation

Pros

  • Reduced MTTR: Faster identification and resolution of issues

  • Proactive Detection: Identify problems before they impact users

  • Cross-Team Collaboration: Common visibility across development and operations

  • Business Insights: Link technical metrics to business outcomes

  • Cost Optimization: Identify performance bottlenecks and resource waste

Cons

  • Initial Complexity: Implementing comprehensive observability requires significant investment

  • Data Volume Challenges: Managing observability data at scale

  • Tool Sprawl: Risk of using too many disconnected tools

  • Signal-to-Noise Ratio: Distinguishing useful signals from noise

  • Skill Requirements: Teams need new skills to leverage observability effectively

2025 Best Practices

  1. Adopt OpenTelemetry as Standard

    • Implement vendor-neutral telemetry collection

    • Use automatic instrumentation where possible

    • Standardize on semantic conventions

  2. Implement Observability as Code (OaC)

    • Define dashboards, alerts and SLOs as code

    • Version control observability configurations

    • Automate observability deployment with infrastructure

  3. Focus on Service Level Objectives (SLOs)

    • Define user-centric reliability targets

    • Measure SLIs that correlate with user experience

    • Create alert policies based on error budgets

  4. Implement Context Propagation

    • Ensure consistent trace context across all systems

    • Add business context to technical telemetry

    • Use correlation IDs across asynchronous boundaries

  5. Apply AI-Assisted Observability

    • Implement ML-based anomaly detection

    • Use AI for root cause analysis

    • Automate incident response with AI recommendations

Related Topics

References

  1. Charity Majors, et al. "Observability Engineering: Achieving Production Excellence" (2023)

  2. Cloud Native Computing Foundation Observability Report (2024)

  3. "The Cost of Poor Observability" - Gartner Research (2025)

PreviousZero Trust ImplementationNextLogging

Last updated 1 day ago

- Collecting and analyzing log data

- Measuring system performance

- Following requests through distributed systems

- Setting performance targets

- Debugging with observability data

- Monitoring your CI/CD workflows

OpenTelemetry Documentation:

Google SRE Handbook:

πŸ”
Logging
Metrics
Tracing
SLOs and SLAs
Kubernetes Troubleshooting
Pipeline Observability
https://opentelemetry.io/docs/
https://sre.google/sre-book/monitoring-distributed-systems/