Real-life Examples
This guide provides practical examples of modern DevSecOps implementations across different platforms and environments.
1. Zero Trust Security Implementation
Azure Entra ID (formerly Azure AD) with Conditional Access
# Terraform configuration for Conditional Access
resource "azuread_conditional_access_policy" "zero_trust" {
display_name = "Zero Trust Policy"
state = "enabled"
conditions {
client_app_types = ["all"]
applications {
included_applications = ["all"]
}
locations {
included_locations = ["all"]
excluded_locations = ["trusted_locations"]
}
platforms {
included_platforms = ["all"]
}
users {
included_users = ["all"]
excluded_users = ["emergency_access_accounts"]
}
}
grant_controls {
operator = "AND"
built_in_controls = [
"mfa",
"compliant_device",
"domain_joined_device"
]
}
session_controls {
application_enforced_restrictions = true
cloud_app_security_policy = "monitor_only"
sign_in_frequency = 4
sign_in_frequency_period = "hours"
}
}
NixOS Hardened Configuration
# configuration.nix
{ config, pkgs, ... }:
{
security = {
# Enable TPM 2.0 support
tpm2 = {
enable = true;
pkcs11.enable = true;
};
# System hardening
lockKernelModules = true;
protectKernelImage = true;
# Audit system
auditd.enable = true;
audit.rules = [
"-w /etc/passwd -p wa -k identity"
"-w /etc/group -p wa -k identity"
"-a exit,always -F arch=b64 -S execve -k exec"
];
# SELinux configuration
selinux = {
enable = true;
type = "strict";
};
};
# Secure boot configuration
boot.loader.systemd-boot.enable = true;
boot.loader.efi.canTouchEfiVariables = true;
boot.initrd.systemd.enable = true;
}
2. AI-Powered Security Monitoring
LLM-Enhanced Log Analysis
# Security Log Analysis with LLMs
import anthropic
from datetime import datetime
class SecurityLogAnalyzer:
def __init__(self, api_key):
self.client = anthropic.Anthropic(api_key=api_key)
async def analyze_logs(self, log_entries):
prompt = f"""
Analyze these security logs for potential threats:
{log_entries}
Focus on:
1. Unusual access patterns
2. Potential data exfiltration
3. Known attack signatures
4. Policy violations
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
max_tokens=2000,
temperature=0,
system="You are a cybersecurity expert analyzing security logs.",
messages=[{
"role": "user",
"content": prompt
}]
)
return response.content
# Usage example
analyzer = SecurityLogAnalyzer(api_key="your-key")
analysis = await analyzer.analyze_logs(log_entries)
Automated Incident Response
# GitHub Actions Workflow for Automated Response
name: Security Incident Response
on:
security_alert:
types: [created]
jobs:
analyze_and_respond:
runs-on: ubuntu-latest
permissions:
security-events: write
issues: write
steps:
- name: Analyze Alert with Claude
uses: anthropic/claude-action@v2
with:
api_key: ${{ secrets.CLAUDE_API_KEY }}
alert_data: ${{ toJson(github.event.alert) }}
- name: Create Response Plan
run: |
# Generate incident response plan using Claude
response_plan=$(claude generate-response-plan)
echo "RESPONSE_PLAN=$response_plan" >> $GITHUB_ENV
- name: Execute Response
uses: security/automated-response@v2
with:
plan: ${{ env.RESPONSE_PLAN }}
notify: ["security-team@company.com"]
3. Cross-Platform Security Pipeline
WSL2 Development Environment
# Setup secure WSL2 development environment
wsl --install Ubuntu-22.04
# Configure WSL security settings
$wslConfig = @"
[wsl2]
memory=8GB
processors=4
kernelCommandLine = vsyscall=emulate
nestedVirtualization=true
pageReporting=true
[boot]
systemd=true
command=
"@
Set-Content -Path "$env:USERPROFILE\.wslconfig" -Value $wslConfig
# Install security tools
wsl -d Ubuntu-22.04 -u root bash -c '
apt update && apt install -y \
apparmor \
auditd \
clamav \
fail2ban \
lynis \
openscap-scanner \
rkhunter \
trivy
'
Multi-Platform Pipeline Security
# Azure Pipeline with cross-platform security checks
trigger:
- main
variables:
securityTools: |
trivy
snyk
semgrep
gosec
pool:
vmImage: ubuntu-latest
stages:
- stage: SecurityScanning
jobs:
- job: LinuxScan
pool:
vmImage: ubuntu-latest
steps:
- script: |
for tool in $(securityTools); do
docker run --rm -v $(pwd):/app "$tool" scan /app
done
- job: WindowsScan
pool:
vmImage: windows-latest
steps:
- powershell: |
Import-Module PSScriptAnalyzer
Invoke-ScriptAnalyzer -Path .\ -Recurse
- job: ContainerScan
steps:
- task: Container-Security-Scan@1
inputs:
imageName: $(Build.Repository.Name)
severityThreshold: CRITICAL
4. Infrastructure Security as Code
Cloud-Native Security Controls
# Terraform AWS Security Configuration
module "security_baseline" {
source = "github.com/nozaq/terraform-aws-secure-baseline"
audit_log_bucket_name = "audit-logs-${data.aws_caller_identity.current.account_id}"
aws_account_id = data.aws_caller_identity.current.account_id
region = data.aws_region.current.name
target_regions = ["us-east-1", "eu-west-1"]
# Enable security features
enable_guardduty = true
enable_vpc_flow_logs = true
enable_cloud_trail = true
enable_config = true
enable_security_hub = true
enable_macie = true
# Configure CloudTrail
cloudtrail_config = {
enable_log_file_validation = true
is_multi_region_trail = true
include_global_service_events = true
enable_logging = true
}
# Configure GuardDuty
guardduty_config = {
enable_s3_protection = true
enable_kubernetes_protection = true
finding_publishing_frequency = "FIFTEEN_MINUTES"
}
}
Kubernetes Security Policies
# OPA/Gatekeeper Policy
apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sRestrictedEndpoints
metadata:
name: restrict-endpoint-access
spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]
namespaces:
- "production"
parameters:
allowedEndpoints:
- ipBlock:
cidr: "10.0.0.0/8"
- ipBlock:
cidr: "172.16.0.0/12"
restrictedPorts:
- 22
- 3389
5. AI-Enhanced Threat Detection
Real-time LLM Analysis
# Real-time threat detection with Claude
from anthropic import Anthropic
import json
class ThreatDetector:
def __init__(self):
self.client = Anthropic()
self.context = []
async def analyze_event(self, event_data):
# Add event to context window
self.context.append(event_data)
# Maintain context window size
if len(self.context) > 10:
self.context.pop(0)
prompt = f"""
Analyze this security event in context of recent events:
Recent events: {json.dumps(self.context[:-1])}
Current event: {json.dumps(event_data)}
Determine:
1. Threat level (0-10)
2. Attack pattern recognition
3. Recommended immediate actions
4. False positive likelihood
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
max_tokens=1000,
messages=[{
"role": "user",
"content": prompt
}]
)
return json.loads(response.content)
6. LLM-Enhanced Observability
Intelligent Log Correlation
# Advanced log correlation with Claude
from anthropic import Anthropic
import opensearch_client
import json
class IntelligentObservability:
def __init__(self):
self.client = Anthropic()
self.opensearch = opensearch_client.OpenSearch()
async def correlate_incidents(self, timeframe_minutes=60):
# Fetch logs from different sources
logs = {
'security': self.opensearch.get_logs('security-*', timeframe_minutes),
'application': self.opensearch.get_logs('app-*', timeframe_minutes),
'infrastructure': self.opensearch.get_logs('infra-*', timeframe_minutes)
}
prompt = f"""
Analyze these logs from different sources within a {timeframe_minutes} minute window:
{json.dumps(logs, indent=2)}
Identify:
1. Correlated events across different systems
2. Potential root causes
3. Impact assessment
4. Recommended actions
"""
analysis = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
messages=[{
"role": "user",
"content": prompt
}]
)
return self._structure_analysis(analysis.content)
Automatic Runbook Generation
# Flux GitOps Configuration for Runbook Generation
apiVersion: source.toolkit.fluxcd.io/v1
kind: GitRepository
metadata:
name: runbook-generator
namespace: flux-system
spec:
interval: 1h
url: https://github.com/org/runbooks
ref:
branch: main
---
apiVersion: automation.toolkit.fluxcd.io/v1
kind: RunbookGenerator
metadata:
name: security-runbooks
spec:
interval: 6h
llmConfig:
provider: anthropic
model: claude-3-opus-20240229
prompts:
- template: |
Generate a detailed runbook for handling security incident:
${incident_type}
Include:
1. Initial assessment steps
2. Containment procedures
3. Evidence collection
4. Recovery steps
5. Post-incident analysis
sourceRef:
kind: GitRepository
name: runbook-generator
path: ./runbooks/security
7. GitOps Security Automation
Flux Security Controller
# Custom Flux Security Controller
apiVersion: source.toolkit.fluxcd.io/v1
kind: GitRepository
metadata:
name: security-policies
namespace: flux-system
spec:
interval: 1m
url: https://github.com/org/security-policies
---
apiVersion: kustomize.toolkit.fluxcd.io/v1
kind: Kustomization
metadata:
name: security-controls
spec:
interval: 5m
path: ./controls
prune: true
sourceRef:
kind: GitRepository
name: security-policies
validation:
llm:
provider: anthropic
model: claude-3-opus-20240229
validationPrompt: |
Validate this security policy change:
${POLICY_CONTENT}
Check for:
1. Compliance violations
2. Security risks
3. Best practice adherence
4. Potential impacts
Automated Policy Updates
# Policy Update Automation with LLM
from git import Repo
from anthropic import Anthropic
import yaml
class SecurityPolicyAutomation:
def __init__(self, repo_path):
self.repo = Repo(repo_path)
self.client = Anthropic()
async def update_security_policies(self, new_cve_data):
# Analyze CVE and generate policy updates
prompt = f"""
Given this new CVE data:
{json.dumps(new_cve_data, indent=2)}
Generate appropriate security policy updates for:
1. Network policies
2. RBAC rules
3. Pod security standards
4. Runtime security controls
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
messages=[{
"role": "user",
"content": prompt
}]
)
# Create branch and update policies
branch_name = f"security-update-{new_cve_data['id']}"
new_branch = self.repo.create_head(branch_name)
new_branch.checkout()
# Apply updates
policies = yaml.safe_load(response.content)
for policy_file, content in policies.items():
with open(f"policies/{policy_file}", 'w') as f:
yaml.dump(content, f)
# Commit and push
self.repo.index.add(['policies/*'])
self.repo.index.commit(f"fix: Security policy update for {new_cve_data['id']}")
self.repo.remotes.origin.push(branch_name)
8. Cross-Platform Development Security
NixOS Development Container
# development.nix
{ pkgs ? import <nixpkgs> {} }:
pkgs.mkShell {
buildInputs = with pkgs; [
# Security tools
clamav
trivy
snyk
semgrep
# Development tools
git
docker
kubernetes-helm
# Language-specific security tools
nodePackages.audit
python39Packages.bandit
python39Packages.safety
# Cloud security tools
aws-nuke
azure-cli
google-cloud-sdk
];
shellHook = ''
# Setup security scanning pre-commit hooks
git config core.hooksPath .githooks
chmod +x .githooks/*
# Configure environment
export SNYK_TOKEN="''${SNYK_TOKEN}"
export SEMGREP_APP_TOKEN="''${SEMGREP_APP_TOKEN}"
'';
}
WSL2 Security Integration
# WSL2 Security Integration Script
$wslConfig = @"
[wsl2]
memory=16GB
processors=4
kernelCommandLine = vsyscall=emulate
nestedVirtualization=true
[automount]
enabled = true
options = "metadata,uid=1000,gid=1000,umask=022"
[experimental]
sparseVhd=true
networkingMode=mirrored
dnsTunneling=true
firewall=true
"@
Set-Content -Path "$env:USERPROFILE\.wslconfig" -Value $wslConfig
# Install security tools in WSL
wsl -d Ubuntu-22.04 bash -c '
# Add security repositories
curl -fsSL https://pkg.snyk.io/key | sudo gpg --dearmor -o /usr/share/keyrings/snyk-archive-keyring.gpg
echo "deb [signed-by=/usr/share/keyrings/snyk-archive-keyring.gpg] https://pkg.snyk.io/deb stable main" | sudo tee /etc/apt/sources.list.d/snyk.list
# Install tools
sudo apt update && sudo apt install -y \
snyk \
trivy \
clamav \
rkhunter \
lynis \
aide \
auditd \
apparmor \
seccomp \
fail2ban
# Configure AppArmor profiles
sudo aa-enforce /etc/apparmor.d/*
# Setup audit rules
sudo auditctl -e 1
sudo auditctl -w /etc/passwd -p wa -k identity
sudo auditctl -w /etc/group -p wa -k identity
'
9. Continuous Security Validation
Automated Security Testing
# GitHub Actions Security Validation
name: Security Validation
on:
schedule:
- cron: '0 */6 * * *' # Every 6 hours
push:
branches: [main, develop]
pull_request:
branches: [main]
jobs:
security-validation:
runs-on: ubuntu-latest
strategy:
matrix:
include:
- type: static-analysis
tools: [semgrep, codeql]
- type: dependency-check
tools: [snyk, osv-scanner]
- type: container-scan
tools: [trivy, grype]
- type: iac-security
tools: [checkov, tfsec]
steps:
- uses: actions/checkout@v4
- name: LLM Security Review
uses: anthropic/claude-security@v2
with:
api_key: ${{ secrets.CLAUDE_API_KEY }}
scan_type: ${{ matrix.type }}
- name: Run Security Tools
run: |
for tool in ${{ join(matrix.tools, ' ') }}; do
docker run --rm -v $(pwd):/code "$tool" scan /code
done
- name: Analyze Results with Claude
uses: anthropic/claude-analysis@v2
with:
results: ${{ steps.security-scan.outputs.results }}
threshold: high
10. LLM Integration Patterns (2025)
Automated Code Review with LLM
from anthropic import Anthropic
import git
from datetime import datetime
class SecureCodeReviewer:
def __init__(self, api_key: str):
self.client = Anthropic(api_key=api_key)
self.repo = git.Repo(".")
async def review_pr(self, pr_diff: str) -> dict:
prompt = f"""
Perform a security-focused code review of these changes:
{pr_diff}
Consider:
1. Security vulnerabilities (OWASP Top 10)
2. Secure coding practices
3. Input validation
4. Authentication/Authorization
5. Data protection
6. Error handling
7. Logging/Monitoring
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
system="You are an expert security code reviewer focusing on finding security vulnerabilities.",
messages=[{"role": "user", "content": prompt}]
)
return self._structure_review(response.content)
def _structure_review(self, review: str) -> dict:
return {
"timestamp": datetime.utcnow().isoformat(),
"findings": self._parse_findings(review),
"recommendations": self._parse_recommendations(review),
"risk_level": self._calculate_risk(review)
}
Infrastructure Validation
class InfrastructureValidator:
def __init__(self, api_key: str):
self.client = Anthropic(api_key=api_key)
async def validate_terraform(self, plan_output: str) -> dict:
prompt = f"""
Analyze this Terraform plan for security risks:
{plan_output}
Check for:
1. Public exposure of resources
2. IAM/RBAC misconfigurations
3. Encryption settings
4. Network security
5. Compliance violations
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
messages=[{"role": "user", "content": prompt}]
)
return {
"validation_time": datetime.utcnow().isoformat(),
"risks": self._extract_risks(response.content),
"compliance": self._check_compliance(response.content),
"recommendations": self._get_recommendations(response.content)
}
Security Policy Generation
# GitOps-based Security Policy Generation
apiVersion: policy.fluxcd.io/v1
kind: PolicyGenerator
metadata:
name: security-policies
spec:
interval: 1h
llmConfig:
provider: anthropic
model: claude-3-opus-20240229
prompts:
webhooks:
- name: validate.security.io
clientConfig:
service:
name: llm-validator
namespace: security
path: "/validate"
rules:
- operations: ["CREATE", "UPDATE"]
apiGroups: ["*"]
apiVersions: ["*"]
resources: ["pods", "deployments", "services"]
# LLM Validation Logic
class K8sValidator:
def __init__(self):
self.client = Anthropic()
async def validate_manifest(self, manifest):
prompt = f"""
Validate this Kubernetes manifest for security issues:
{manifest}
Check for:
1. Container security settings
2. Network policies
3. Resource constraints
4. Service account permissions
5. Security context
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
messages=[{
"role": "user",
"content": prompt
}]
)
validation = self._parse_validation(response.content)
return {
"allowed": validation["risk_level"] < 8,
"risks": validation["risks"],
"recommendations": validation["recommendations"]
}
Pipeline Configuration Generator
# CI/CD Pipeline Generator with LLM
class PipelineGenerator:
def __init__(self):
self.client = Anthropic()
async def generate_pipeline(self, project_analysis):
prompt = f"""
Generate a secure CI/CD pipeline configuration for:
{json.dumps(project_analysis, indent=2)}
Include:
1. Security scanning stages
2. Compliance checks
3. Automated testing
4. Deployment safeguards
5. Monitoring integration
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
messages=[{
"role": "user",
"content": prompt
}]
)
return self._format_pipeline_config(response.content)
Incident Response Automation
# Automated Incident Response with LLM
class IncidentResponder:
def __init__(self):
self.client = Anthropic()
self.incident_history = []
async def handle_incident(self, alert_data):
# Add context from similar past incidents
relevant_history = self._find_similar_incidents(alert_data)
prompt = f"""
Create an incident response plan for:
Alert: {json.dumps(alert_data, indent=2)}
Similar past incidents:
{json.dumps(relevant_history, indent=2)}
Provide:
1. Severity assessment
2. Immediate actions
3. Investigation steps
4. Containment strategy
5. Recovery procedures
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
messages=[{
"role": "user",
"content": prompt
}]
)
return self._execute_response_plan(response.content)
Best Practices for LLM Integration
Rate Limiting and Caching
from functools import lru_cache
import time
class RateLimitedLLM:
def __init__(self, calls_per_minute=60):
self.rate_limit = calls_per_minute
self.calls = []
def _check_rate_limit(self):
now = time.time()
minute_ago = now - 60
self.calls = [t for t in self.calls if t > minute_ago]
return len(self.calls) < self.rate_limit
@lru_cache(maxsize=1000)
async def query(self, prompt):
if not self._check_rate_limit():
raise RateLimitExceeded("Rate limit exceeded")
self.calls.append(time.time())
return await self._make_request(prompt)
Error Handling
class LLMHandler:
def __init__(self):
self.client = Anthropic()
self.fallback_client = OpenAI()
async def safe_query(self, prompt, retries=3):
for attempt in range(retries):
try:
return await self.client.messages.create(
model="claude-3-opus-20240229",
messages=[{"role": "user", "content": prompt}]
)
except Exception as e:
if attempt == retries - 1:
return await self._fallback_query(prompt)
await asyncio.sleep(2 ** attempt)
Context Management
class ContextManager:
def __init__(self, max_size=10):
self.context = []
self.max_size = max_size
def add_context(self, item):
self.context.append(item)
if len(self.context) > self.max_size:
self.context.pop(0)
def get_relevant_context(self, query):
return [c for c in self.context
if self._calculate_relevance(c, query) > 0.7]
Security Considerations
class SecureLLM:
def __init__(self):
self.client = Anthropic()
11. Supply Chain Security with LLM Integration
SBOM Analysis and Validation
# AI-Enhanced SBOM Analysis
from anthropic import Anthropic
import cyclonedx
import json
class SBOMAnalyzer:
def __init__(self, api_key: str):
self.client = Anthropic(api_key=api_key)
async def analyze_sbom(self, sbom_data: str) -> dict:
prompt = f"""
Analyze this Software Bill of Materials (SBOM):
{sbom_data}
Identify:
1. High-risk dependencies
2. Known vulnerabilities
3. License compliance issues
4. Supply chain risks
5. Outdated components
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
messages=[{"role": "user", "content": prompt}]
)
return {
"risks": self._extract_risks(response.content),
"recommendations": self._extract_recommendations(response.content),
"compliance": self._check_compliance(response.content)
}
Artifact Signing and Verification
# Cosign Configuration with LLM Validation
apiVersion: security.cosign.io/v1alpha1
kind: SignaturePolicy
metadata:
name: artifact-verification
spec:
images:
- glob: "registry.company.com/**"
authorities:
- name: company-authority
key: company-signing-key
validationHooks:
- name: llm-validation
type: webhook
endpoint: "http://llm-validator:8080/validate"
timeout: 30s
# LLM Validation Service
class ArtifactValidator:
def __init__(self, api_key: str):
self.client = Anthropic(api_key=api_key)
async def validate_artifact(self, artifact_metadata: dict) -> bool:
prompt = f"""
Validate this artifact for security risks:
{json.dumps(artifact_metadata, indent=2)}
Check:
1. Build provenance
2. Signature verification
3. Source repository validation
4. Build environment security
5. Dependency chain
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
messages=[{"role": "user", "content": prompt}]
)
validation = self._parse_validation(response.content)
return validation["risk_score"] < self.risk_threshold
Dependency Update Automation
# Intelligent Dependency Updater
class DependencyManager:
def __init__(self, api_key: str):
self.client = Anthropic(api_key=api_key)
async def analyze_update(self,
package: str,
current_version: str,
new_version: str) -> dict:
changelog = await self._fetch_changelog(package, current_version, new_version)
prompt = f"""
Analyze this dependency update:
Package: {package}
Current: {current_version}
New: {new_version}
Changelog:
{changelog}
Assess:
1. Breaking changes
2. Security implications
3. Performance impact
4. Compatibility issues
5. Required adaptations
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
messages=[{"role": "user", "content": prompt}]
)
return self._structure_analysis(response.content)
Container Image Security
# AI-Enhanced Container Security
class ContainerSecurityAnalyst:
def __init__(self, api_key: str):
self.client = Anthropic(api_key=api_key)
async def analyze_dockerfile(self, dockerfile: str) -> dict:
prompt = f"""
Analyze this Dockerfile for security best practices:
{dockerfile}
Check for:
1. Base image security
2. Layer optimization
3. Secret management
4. Permission settings
5. Update practices
6. CVE vulnerabilities
"""
response = await self.client.messages.create(
model="claude-3-opus-20240229",
temperature=0,
messages=[{"role": "user", "content": prompt}]
)
return {
"security_score": self._calculate_score(response.content),
"violations": self._extract_violations(response.content),
"recommendations": self._get_recommendations(response.content)
}
Supply Chain Monitoring
# Supply Chain Monitoring Configuration
apiVersion: monitoring.security.io/v1
kind: SupplyChainMonitor
metadata:
name: supply-chain-security
spec:
sources:
- type: github
repositories:
- org/repo1
- org/repo2
- type: container-registry
registries:
- registry.company.com
- type: artifact-repository
repositories:
- type: maven
url: https://maven.company.com
- type: npm
url: https://npm.company.com
analysis:
llm:
provider: anthropic
model: claude-3-opus-20240229
analyzers:
- type: dependency
schedule: "0 */6 * * *"
- type: vulnerability
schedule: "0 */4 * * *"
- type: license
schedule: "0 0 * * *"
alerts:
- name: critical-vulnerability
severity: critical
channels:
- slack: "#security-alerts"
- email: "security@company.com"
- name: license-violation
severity: high
channels:
- jira:
project: COMPLIANCE
type: Security
Best Practices for Supply Chain Security
Continuous Verification
Regular SBOM generation and analysis
Automated dependency updates
Container image scanning
Build environment security
Artifact signing and verification
Risk Management
Supply chain threat modeling
Vendor security assessment
Third-party code review
Dependency impact analysis
Update strategy planning
Compliance and Documentation
License compliance tracking
Security documentation
Audit trail maintenance
Policy enforcement
Incident response procedures
Monitoring and Alerts
Real-time vulnerability monitoring
Dependency update notifications
Security scoring
Compliance violations
Build process anomalies
Remember to:
Regularly update security tools
Monitor supply chain threats
Maintain security documentation
Train teams on security practices
Review and update policies
Validate third-party components
Implement least privilege access
Use version pinning
Monitor build environments
Last updated