DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Getting Started - Installation and initial setup [BEGINNER]
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
        • AWS Scenarios
        • GCP Scenarios
      • Testing and Validation - Ensuring infrastructure quality
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices - Production-ready implementation strategies
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions - GitHub-based automation workflows
        • Azure Pipelines - Azure DevOps integration
        • GitLab CI - GitLab-based deployment pipelines
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
    • Docker
      • Dockerfile Best Practices
      • Docker Compose
    • Kubernetes
      • CLI Tools - Essential command-line utilities
        • Kubectl
        • Kubens
        • Kubectx
      • Core Concepts
      • Components
      • Best Practices
        • Pod Security
        • Security Monitoring
        • Resource Limits
      • Advanced Features - Beyond the basics [ADVANCED]
        • Service Mesh
        • Ingress Controllers
          • NGINX
          • Traefik
          • Kong
          • Gloo Edge
      • Troubleshooting - Diagnosing and resolving common issues
        • Pod Troubleshooting Commands
      • Enterprise Architecture
      • Health Management
      • Security & Compliance
      • Virtual Clusters
    • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
    • Serverless Edge
    • IoT Edge Patterns
    • Real-Time Processing
    • Edge AI/ML
    • Security Hardening
    • Observability Patterns
    • Network Optimization
    • Storage Patterns
  • 🔄CI/CD & GitOps
    • CI/CD Overview
    • Continuous Integration
    • Continuous Delivery
      • Deployment Strategies
      • Secrets Management
      • Blue-Green Deployments
      • Deployment Metrics
      • Progressive Delivery
      • Release Management for DevOps/SRE (2025)
    • CI/CD Platforms - Tool selection and implementation
      • Azure DevOps
        • Pipelines
          • Stages
          • Jobs
          • Steps
          • Templates - Reusable pipeline components
          • Extends
          • Service Connections - External service authentication
          • Best Practices for 2025
          • Agents and Runners
          • Third-Party Integrations
          • Azure DevOps CLI
        • Boards & Work Items
      • GitHub Actions
      • GitLab
        • GitLab Runner
        • Real-life scenarios
        • Installation guides
        • Pros and Cons
        • Comparison with alternatives
    • GitOps
      • Modern GitOps Practices
      • GitOps Patterns for Multi-Cloud (2025)
      • Flux
        • Overview
        • Progressive Delivery
        • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
    • Git Branching Strategies
    • Component Versioning
    • Kubernetes Manifest Versioning
    • GitLab
    • Creating a Fork
    • Naming Branches
    • Pull Requests
    • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
    • Azure
      • Best Practices
      • Landing Zones
      • Services
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
    • Google Cloud
      • Services
    • Private Cloud
  • 🔐Security & Compliance
    • DevSecOps Overview
    • DevSecOps Pipeline Security
    • DevSecOps
      • Real-life Examples
      • Scanning & Protection - Automated security tooling
        • Dependency Scanning
        • Credential Scanning
        • Container Security Scanning
        • Static Code Analysis
          • Best Practices
          • Tool Integration Guide
          • Pipeline Configuration
      • CI/CD Security
      • Secrets Rotation
    • Supply Chain Security
      • SLSA Framework
      • Binary Authorization
      • Artifact Signing
    • Security Best Practices
      • Threat Modeling
      • Kubernetes Security
    • SecOps
    • Zero Trust Model
    • Cloud Compliance
      • ISO/IEC 27001:2022
      • ISO 22301:2019
      • PCI DSS
      • CSA STAR
    • Security Frameworks
    • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
    • Logging
    • Metrics
    • Tracing
    • Dashboards
    • SLOs and SLAs
    • Observability as Code
    • Pipeline Observability
  • 🧪Testing Strategies
    • Testing Overview
    • Modern Testing Approaches
    • End-to-End Testing
    • Unit Testing
    • Performance Testing
      • Load Testing
    • Fault Injection Testing
    • Integration Testing
    • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
    • Claude
      • Installation Guide
      • Project Guides
      • MCP Server Setup
      • LLM Comparison
    • Ollama
      • Installation Guide
      • Configuration
      • Models and Fine-tuning
      • DevOps Usage
      • Docker Setup
      • GPU Setup
      • Open WebUI
    • Copilot
      • Installation Guide
      • VS Code Integration
      • CLI Usage
    • Gemini
      • Installation Guides - Platform-specific setup
        • Linux Installation
        • WSL Installation
        • NixOS Installation
      • Gemini 2.5 Features
      • Roles and Agents
      • NotebookML Guide
      • Cloud Infrastructure Deployment
      • Summary
  • 💻Development Environment
    • Tools Overview
    • DevOps Tools
    • Operating Systems - Development platforms
      • NixOS
        • Installation
        • Nix Language Guide
        • DevEnv with Nix
        • Cloud Deployments
      • WSL2
        • Distributions
        • Terminal Setup
    • Editor Environments
    • CLI Tools
      • Azure CLI
      • PowerShell
      • Linux Commands
      • YAML Tools
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • 📖Documentation Best Practices
    • Documentation Strategy
    • Project Documentation
    • Release Notes
    • Static Sites
    • Documentation Templates
    • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Recommended Reading
    • Troubleshooting Guide
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Development Setup
    • Development Setup
Powered by GitBook
On this page
  • Key Principles
  • Step-by-Step: Implementing Self-Healing
  • 1. Health Checks & Monitoring
  • 2. Automated Recovery
  • 3. Resiliency Patterns
  • 4. Failover & Redundancy
  • 5. Chaos Engineering & Fault Injection
  • Real-Life Example: Self-Healing Web App on Kubernetes
  • Best Practices
  • Common Pitfalls
  • References
Edit on GitHub
  1. DevOps & SRE Foundations
  2. DevOps Overview

Design for Self Healing

Designing for self-healing ensures your cloud-native applications (AWS, Azure, GCP, Kubernetes) can detect, respond to, and recover from failures automatically. This approach increases reliability, reduces manual intervention, and supports high availability.


Key Principles

  1. Detect Failures: Use monitoring, health checks, and alerts.

  2. Respond Gracefully: Automate recovery actions (restart, failover, scale).

  3. Log & Monitor: Capture metrics and logs for operational insight.


Step-by-Step: Implementing Self-Healing

1. Health Checks & Monitoring

  • Use readiness and liveness probes in Kubernetes:

    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
      initialDelaySeconds: 10
      periodSeconds: 5
  • Enable cloud-native monitoring (CloudWatch, Azure Monitor, GCP Operations Suite).

  • Set up alerts for critical metrics (CPU, memory, error rates).

2. Automated Recovery

  • Kubernetes:

    • Pods are automatically restarted on failure.

    • Use Deployments/StatefulSets for self-healing workloads.

  • Cloud VMs:

    • Use auto-healing groups (AWS Auto Scaling, Azure VMSS, GCP Instance Groups).

  • Serverless:

    • Functions are retried automatically on failure (configurable in AWS Lambda, Azure Functions, GCP Cloud Functions).

3. Resiliency Patterns

  • Retry Logic:

    • Implement exponential backoff for transient errors.

    • Example (Python):

      import time
      for i in range(5):
          try:
              # call remote service
              break
          except Exception:
              time.sleep(2 ** i)
  • Circuit Breaker:

    • Use libraries like Polly (.NET), Resilience4j (Java), or Hystrix (legacy) to prevent cascading failures.

  • Bulkhead:

    • Isolate resources to prevent one failure from impacting the whole system.

  • Queue-Based Load Leveling:

    • Use message queues (SQS, Azure Service Bus, Pub/Sub) to buffer spikes.

4. Failover & Redundancy

  • Deploy across multiple zones/regions.

  • Use managed databases with automatic failover (RDS, Cosmos DB, Cloud SQL).

  • For stateless services, use load balancers (ALB, Azure Load Balancer, GCP Load Balancer).

5. Chaos Engineering & Fault Injection

  • Test failure scenarios using tools like:

  • Example: Simulate pod failure in Kubernetes:

    kubectl delete pod <pod-name> -n <namespace>

Real-Life Example: Self-Healing Web App on Kubernetes

  1. Deploy app with liveness/readiness probes.

  2. Set up HPA (Horizontal Pod Autoscaler) to scale on CPU/memory.

  3. Use Prometheus + Alertmanager for monitoring and alerting.

  4. Automate rollbacks with ArgoCD/Flux if health checks fail after deployment.


Best Practices

  • Always automate detection and recovery—avoid manual intervention.

  • Store all configuration as code (GitOps).

  • Regularly test failure scenarios in lower environments.

  • Document recovery procedures and automate them where possible.

  • Use LLMs (Copilot, Claude) to generate runbooks or analyze logs for root cause.

Common Pitfalls

  • Relying only on manual monitoring or intervention.

  • Not testing failure and recovery paths.

  • Ignoring resource limits, leading to OOMKilled pods.

  • Failing to monitor both application and infrastructure layers.


References

PreviousThe 12 Factor AppNextIncident Management Best Practices (2025)

Last updated 2 days ago

(Kubernetes)

🧠
Chaos Mesh
AWS Fault Injection Simulator
Azure Chaos Studio
Kubernetes Probes
AWS Auto Healing
Azure VMSS Health
Google Cloud Instance Groups
Chaos Engineering