DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Getting Started - Installation and initial setup [BEGINNER]
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
        • AWS Scenarios
        • GCP Scenarios
      • Testing and Validation - Ensuring infrastructure quality
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices - Production-ready implementation strategies
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions - GitHub-based automation workflows
        • Azure Pipelines - Azure DevOps integration
        • GitLab CI - GitLab-based deployment pipelines
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
    • Docker
      • Dockerfile Best Practices
      • Docker Compose
    • Kubernetes
      • CLI Tools - Essential command-line utilities
        • Kubectl
        • Kubens
        • Kubectx
      • Core Concepts
      • Components
      • Best Practices
        • Pod Security
        • Security Monitoring
        • Resource Limits
      • Advanced Features - Beyond the basics [ADVANCED]
        • Service Mesh
        • Ingress Controllers
          • NGINX
          • Traefik
          • Kong
          • Gloo Edge
      • Troubleshooting - Diagnosing and resolving common issues
        • Pod Troubleshooting Commands
      • Enterprise Architecture
      • Health Management
      • Security & Compliance
      • Virtual Clusters
    • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
    • Serverless Edge
    • IoT Edge Patterns
    • Real-Time Processing
    • Edge AI/ML
    • Security Hardening
    • Observability Patterns
    • Network Optimization
    • Storage Patterns
  • 🔄CI/CD & GitOps
    • CI/CD Overview
    • Continuous Integration
    • Continuous Delivery
      • Deployment Strategies
      • Secrets Management
      • Blue-Green Deployments
      • Deployment Metrics
      • Progressive Delivery
      • Release Management for DevOps/SRE (2025)
    • CI/CD Platforms - Tool selection and implementation
      • Azure DevOps
        • Pipelines
          • Stages
          • Jobs
          • Steps
          • Templates - Reusable pipeline components
          • Extends
          • Service Connections - External service authentication
          • Best Practices for 2025
          • Agents and Runners
          • Third-Party Integrations
          • Azure DevOps CLI
        • Boards & Work Items
      • GitHub Actions
      • GitLab
        • GitLab Runner
        • Real-life scenarios
        • Installation guides
        • Pros and Cons
        • Comparison with alternatives
    • GitOps
      • Modern GitOps Practices
      • GitOps Patterns for Multi-Cloud (2025)
      • Flux
        • Overview
        • Progressive Delivery
        • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
    • Git Branching Strategies
    • Component Versioning
    • Kubernetes Manifest Versioning
    • GitLab
    • Creating a Fork
    • Naming Branches
    • Pull Requests
    • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
    • Azure
      • Best Practices
      • Landing Zones
      • Services
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
    • Google Cloud
      • Services
    • Private Cloud
  • 🔐Security & Compliance
    • DevSecOps Overview
    • DevSecOps Pipeline Security
    • DevSecOps
      • Real-life Examples
      • Scanning & Protection - Automated security tooling
        • Dependency Scanning
        • Credential Scanning
        • Container Security Scanning
        • Static Code Analysis
          • Best Practices
          • Tool Integration Guide
          • Pipeline Configuration
      • CI/CD Security
      • Secrets Rotation
    • Supply Chain Security
      • SLSA Framework
      • Binary Authorization
      • Artifact Signing
    • Security Best Practices
      • Threat Modeling
      • Kubernetes Security
    • SecOps
    • Zero Trust Model
    • Cloud Compliance
      • ISO/IEC 27001:2022
      • ISO 22301:2019
      • PCI DSS
      • CSA STAR
    • Security Frameworks
    • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
    • Logging
    • Metrics
    • Tracing
    • Dashboards
    • SLOs and SLAs
    • Observability as Code
    • Pipeline Observability
  • 🧪Testing Strategies
    • Testing Overview
    • Modern Testing Approaches
    • End-to-End Testing
    • Unit Testing
    • Performance Testing
      • Load Testing
    • Fault Injection Testing
    • Integration Testing
    • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
    • Claude
      • Installation Guide
      • Project Guides
      • MCP Server Setup
      • LLM Comparison
    • Ollama
      • Installation Guide
      • Configuration
      • Models and Fine-tuning
      • DevOps Usage
      • Docker Setup
      • GPU Setup
      • Open WebUI
    • Copilot
      • Installation Guide
      • VS Code Integration
      • CLI Usage
    • Gemini
      • Installation Guides - Platform-specific setup
        • Linux Installation
        • WSL Installation
        • NixOS Installation
      • Gemini 2.5 Features
      • Roles and Agents
      • NotebookML Guide
      • Cloud Infrastructure Deployment
      • Summary
  • 💻Development Environment
    • Tools Overview
    • DevOps Tools
    • Operating Systems - Development platforms
      • NixOS
        • Installation
        • Nix Language Guide
        • DevEnv with Nix
        • Cloud Deployments
      • WSL2
        • Distributions
        • Terminal Setup
    • Editor Environments
    • CLI Tools
      • Azure CLI
      • PowerShell
      • Linux Commands
      • YAML Tools
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • 📖Documentation Best Practices
    • Documentation Strategy
    • Project Documentation
    • Release Notes
    • Static Sites
    • Documentation Templates
    • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Recommended Reading
    • Troubleshooting Guide
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Development Setup
    • Development Setup
Powered by GitBook
On this page
  • Prerequisites
  • Installation Steps
  • 1. Prepare Your WSL Environment
  • 2. Create a Python Virtual Environment
  • 3. Install Google Generative AI SDK
  • 4. Configure Authentication
  • 5. Install Google Cloud CLI (Optional but Recommended)
  • 6. Verify Installation
  • WSL-Specific Considerations
  • Filesystem Performance
  • GPU Acceleration for ML Workloads
  • Windows/WSL Integration
  • Troubleshooting WSL-Specific Issues
Edit on GitHub
  1. AI & LLM Integration
  2. Gemini
  3. Installation Guides - Platform-specific setup

WSL Installation

This guide covers setting up Google Gemini on Windows Subsystem for Linux (WSL2), providing a Linux environment on Windows systems for DevOps professionals.

Prerequisites

  • Windows 10 version 2004+ or Windows 11

  • WSL2 installed and configured

  • A Linux distribution installed via WSL (Ubuntu recommended)

  • Python 3.9+ installed on your WSL distribution

  • A Google Cloud account with Gemini API access

Installation Steps

1. Prepare Your WSL Environment

First, ensure your WSL environment is up-to-date:

# Open your WSL terminal
wsl

# Update your Linux distribution
sudo apt update && sudo apt upgrade -y

# Install Python dependencies
sudo apt install -y python3-pip python3-venv python3-dev build-essential

2. Create a Python Virtual Environment

# Navigate to your home directory or preferred project directory
cd ~

# Create a directory for your Gemini projects
mkdir -p gemini-projects && cd gemini-projects

# Create a virtual environment
python3 -m venv gemini-env

# Activate the environment
source gemini-env/bin/activate

3. Install Google Generative AI SDK

# Upgrade pip
pip install --upgrade pip

# Install the Gemini Python SDK
pip install google-generativeai

# For more advanced features with Vertex AI
pip install -U "google-cloud-aiplatform[stable]"

4. Configure Authentication

Using API Key

  1. Create and copy your API key

  2. In your WSL terminal, add to your environment:

echo 'export GOOGLE_API_KEY="your-api-key-here"' >> ~/.bashrc
source ~/.bashrc

Using Service Account (Production)

# Download your service account key to your Windows filesystem
# For example to C:\Users\YourName\Documents\service-account.json

# Create directory for credentials in WSL
mkdir -p ~/.config/gcloud

# Copy the file to your WSL filesystem
cp /mnt/c/Users/YourName/Documents/service-account.json ~/.config/gcloud/

# Set the environment variable
echo 'export GOOGLE_APPLICATION_CREDENTIALS="$HOME/.config/gcloud/service-account.json"' >> ~/.bashrc
source ~/.bashrc

5. Install Google Cloud CLI (Optional but Recommended)

# Download and install the Google Cloud CLI
curl https://sdk.cloud.google.com | bash

# Restart your shell
exec -l $SHELL

# Initialize gcloud
gcloud init

# Install AI Platform components
gcloud components install ai-platform

6. Verify Installation

Create a test file:

cat > test_gemini.py << 'EOF'
import google.generativeai as genai
import os

# Configure the API key
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

# Test the API
model = genai.GenerativeModel('gemini-pro')
result = model.generate_content("Create a brief explanation of what WSL2 is for DevOps engineers")

print(result.text)
EOF

# Run the test
python test_gemini.py

WSL-Specific Considerations

Filesystem Performance

For best performance when working with large projects:

# Store projects in the Linux filesystem, not Windows
mkdir -p ~/gemini-projects

# Avoid working from /mnt/c/ when possible for performance-sensitive tasks

GPU Acceleration for ML Workloads

WSL2 supports GPU acceleration, which can improve performance for large ML operations:

  1. Install the latest NVIDIA CUDA drivers on Windows

  2. Install CUDA support in your WSL distribution:

sudo apt install -y nvidia-cuda-toolkit
  1. Verify GPU access from WSL:

nvidia-smi

Windows/WSL Integration

You can integrate Gemini with both Windows and Linux tools:

# Create a Windows alias for your Gemini environment (add to Windows PowerShell profile)
function gemini-wsl { wsl -d Ubuntu -u your-username "cd ~/gemini-projects && source gemini-env/bin/activate && python3 $args" }

Troubleshooting WSL-Specific Issues

  1. Network Connectivity Issues:

    # If you encounter network issues, edit /etc/resolv.conf
    sudo nano /etc/resolv.conf
    # Add or modify: nameserver 8.8.8.8
  2. File Permission Problems:

    # Fix permissions for key files
    chmod 600 ~/.config/gcloud/service-account.json
  3. WSL Memory Limitations: Create a .wslconfig file in your Windows user directory:

    [wsl2]
    memory=8GB
    processors=4
PreviousLinux InstallationNextNixOS Installation

Last updated 2 days ago

Visit in your Windows browser

🧠
Google AI Studio