DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • Contribute
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
          • Azure Authetication
            • Service Principal
            • Service Principal in block
            • Service Principal in env
        • AWS Scenarios
          • AWS Authentication
        • GCP Scenarios
          • GCP Authentication
      • Testing and Validation
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions
        • Azure Pipelines
        • GitLab CI
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
      • Docker
        • Dockerfile Best Practices
        • Docker Compose
      • Kubernetes
        • CLI Tools - Essential command-line utilities
          • Kubectl
          • Kubens
          • Kubectx
        • Core Concepts
        • Components
        • Best Practices
          • Pod Security
          • Security Monitoring
          • Resource Limits
        • Advanced Features - Beyond the basics [ADVANCED]
          • Service Mesh
            • Istio
            • Linkerd
          • Ingress Controllers
            • NGINX
            • Traefik
            • Kong
            • Gloo Edge
            • Contour
        • Tips
          • Status in Pods
          • Resource handling
          • Pod Troubleshooting Commands
        • Enterprise Architecture
        • Health Management
        • Security & Compliance
        • Virtual Clusters
      • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
      • Serverless Edge
      • IoT Edge Patterns
      • Real-Time Processing
      • Edge AI/ML
      • Security Hardening
      • Observability Patterns
      • Network Optimization
      • Storage Patterns
  • 🔄CI/CD & GitOps
    • CI/CD Overview
      • Continuous Integration
      • Continuous Delivery
        • Deployment Strategies
        • Secrets Management
        • Blue-Green Deployments
        • Deployment Metrics
        • Progressive Delivery
        • Release Management for DevOps/SRE (2025)
      • CI/CD Platforms - Tool selection and implementation
        • Azure DevOps
          • Pipelines
            • Stages
            • Jobs
            • Steps
            • Templates - Reusable pipeline components
            • Extends
            • Service Connections - External service authentication
            • Best Practices for 2025
            • Agents and Runners
            • Third-Party Integrations
            • Azure DevOps CLI
          • Boards & Work Items
        • GitHub Actions
        • GitLab
          • GitLab Runner
          • Real-life scenarios
          • Installation guides
          • Pros and Cons
          • Comparison with alternatives
      • GitOps
        • Modern GitOps Practices
        • GitOps Patterns for Multi-Cloud (2025)
        • Flux
          • Overview
          • Progressive Delivery
          • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
      • Git Branching Strategies
      • Component Versioning
      • Kubernetes Manifest Versioning
      • GitLab
      • Creating a Fork
      • Naming Branches
      • Pull Requests
      • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
      • AWS to Azure
      • Azure to AWS
      • GCP to Azure
      • AWS to GCP
      • GCP to AWS
    • Azure
      • Best Practices
        • Azure Best Practices Overview
        • Azure Architecture Best Practices
        • Azure Naming Standards
        • Azure Tags
        • Azure Security Best Practices
      • Landing Zones
      • Services
        • Azure Active Directory (AAD)
        • Azure Monitor
        • Azure Key Vault
        • Azure Service Bus
        • Azure DNS
        • Azure App Service
        • Azure Batch
        • Azure Machine Learning
        • Azure OpenAI Service
        • Azure Cognitive Services
        • Azure Kubernetes Service (AKS)
        • Azure Databricks
        • Azure SQL Database
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
      • Services
        • AWS IAM (Identity and Access Management)
        • Amazon CloudWatch
        • Amazon SNS (Simple Notification Service)
        • Amazon SQS (Simple Queue Service)
        • Amazon Route 53
        • AWS Elastic Beanstalk
        • AWS Batch
        • Amazon SageMaker
        • Amazon Bedrock
        • Amazon Comprehend
    • Google Cloud
      • Services
        • Cloud CDN
        • Cloud DNS
        • Cloud Load Balancing
        • Google Kubernetes Engine (GKE)
        • Cloud Run
        • Artifact Registry
        • Compute Engine
        • Cloud Functions
        • App Engine
        • Cloud Storage
        • Persistent Disk
        • Filestore
        • Cloud SQL
        • Cloud Spanner
        • Firestore
        • Bigtable
        • BigQuery
        • VPC (Virtual Private Cloud)
  • 🔐Security & Compliance
    • DevSecOps Overview
      • DevSecOps Pipeline Security
      • DevSecOps
        • Real-life Examples
        • Scanning & Protection - Automated security tooling
          • Dependency Scanning
          • Credential Scanning
          • Container Security Scanning
          • Static Code Analysis
            • Best Practices
            • Tool Integration Guide
            • Pipeline Configuration
        • CI/CD Security
        • Secrets Rotation
      • Supply Chain Security
        • SLSA Framework
        • Binary Authorization
        • Artifact Signing
      • Security Best Practices
        • Threat Modeling
        • Kubernetes Security
      • SecOps
      • Zero Trust Model
      • Cloud Compliance
        • ISO/IEC 27001:2022
        • ISO 22301:2019
        • PCI DSS
        • CSA STAR
      • Security Frameworks
      • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
      • Logging
      • Metrics
      • Tracing
      • Dashboards
      • SLOs and SLAs
      • Observability as Code
      • Pipeline Observability
  • 🧪Testing Strategies
    • Testing Overview
      • Modern Testing Approaches
      • End-to-End Testing
      • Unit Testing
      • Performance Testing
        • Load Testing
      • Fault Injection Testing
      • Integration Testing
      • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
      • Claude
        • Installation Guide
        • Project Guides
        • MCP Server Setup
        • LLM Comparison
      • Ollama
        • Installation Guide
        • Configuration
        • Models and Fine-tuning
        • DevOps Usage
        • Docker Setup
        • GPU Setup
        • Open WebUI
      • Copilot
        • Installation Guide
        • VS Code Integration
        • CLI Usage
      • Gemini
        • Installation Guides - Platform-specific setup
          • Linux Installation
          • WSL Installation
          • NixOS Installation
        • Gemini 2.5 Features
        • Roles and Agents
        • NotebookML Guide
        • Cloud Infrastructure Deployment
        • Summary
  • 💻Development Environment
    • DevOps Tools
      • Operating Systems - Development platforms
        • NixOS
          • Install NixOS: PC, Mac, WSL
          • Nix Language Deep Dive
          • Nix Language Fundamentals
            • Nix Functions and Techniques
            • Building Packages with Nix
            • NixOS Configuration Patterns
            • Flakes: The Future of Nix
          • NixOS Generators: Azure & QEMU
        • WSL2
          • Distributions
          • Terminal Setup
      • Editor Environments
      • CLI Tools
        • Azure CLI
        • PowerShell
        • Linux Commands
          • SSH - Secure Shell)
            • SSH Config
            • SSH Port Forwarding
        • Linux Fundametals
        • Cloud init
          • Cloud init examples
        • YAML Tools
          • How to create a k8s yaml file - How to create YAML config
          • YQ the tool
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Should Learn
    • Should Learn
    • Linux
      • Commands
      • OS
      • Services
    • Terraform
    • Getting Started - Installation and initial setup [BEGINNER]
    • Cloud Integrations
    • Testing and Validation - Ensuring infrastructure quality
      • Unit Testing
      • Integration Testing
      • End-to-End Testing
      • Terratest Guide
    • Best Practices - Production-ready implementation strategies
      • State Management
      • Security
      • Code Organization
      • Performance
    • Tools & Utilities
    • CI/CD Integration
    • Bicep
    • Kubernetes
      • kubectl
    • Ansible
    • Puppet
    • Java
    • Rust
    • Azure CLI
  • 📖Documentation Best Practices
    • Documentation Strategy
      • Project Documentation
      • Release Notes
      • Static Sites
      • Documentation Templates
      • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Tool Decision Guides
    • Recommended Reading
    • Troubleshooting Guide
    • Development Setup
Powered by GitBook
On this page
  • Advantages of NixOS for Gemini Deployments
  • Installation Methods
  • Method 1: Using Nix Flakes (Recommended)
  • Method 2: Using configuration.nix (System-wide)
  • Method 3: Using nix-shell (Project-specific)
  • Authentication Configuration
  • Managing API Keys Securely with NixOS
  • Service Integration
  • Creating a Gemini Service with systemd in NixOS
  • Verification & Testing
Edit on GitHub
  1. AI & LLM Integration
  2. Overview
  3. Gemini
  4. Installation Guides - Platform-specific setup

NixOS Installation

PreviousWSL InstallationNextGemini 2.5 Features

Last updated 9 days ago

This guide covers setting up Google Gemini on NixOS, a purely functional Linux distribution that offers reproducible system configurations through the Nix package manager.

Advantages of NixOS for Gemini Deployments

NixOS provides several benefits for DevOps professionals working with AI tools like Gemini:

  • Reproducible environments: Identical deployment across all systems

  • Declarative configuration: System configuration as code

  • Isolated dependencies: Prevent conflicts between different Python versions or libraries

  • Rollbacks: Easy recovery if something breaks

  • Development shells: Isolated environments for different AI projects

Installation Methods

Method 1: Using Nix Flakes (Recommended)

provide a modern, reproducible approach to Nix packages.

  1. First, ensure flakes are enabled in your NixOS configuration:

# In your configuration.nix
{ pkgs, ... }: {
  nix = {
    package = pkgs.nixFlakes;
    extraOptions = ''
      experimental-features = nix-command flakes
    '';
  };
}
  1. Create a new flake for your Gemini project:

mkdir -p ~/projects/gemini-devops
cd ~/projects/gemini-devops
  1. Create a flake.nix file:

{
  description = "Gemini AI Development Environment";

  inputs = {
    nixpkgs.url = "github:NixOS/nixpkgs/nixos-unstable";
    flake-utils.url = "github:numtide/flake-utils";
  };

  outputs = { self, nixpkgs, flake-utils }:
    flake-utils.lib.eachDefaultSystem (system:
      let
        pkgs = import nixpkgs { inherit system; };
        python = pkgs.python311;
        pythonEnv = python.withPackages (ps: with ps; [
          google-generativeai
          google-cloud-aiplatform
          jupyter
          pandas
          matplotlib
          pygments
          (
            buildPythonPackage rec {
              pname = "notebookml";
              version = "0.4.0";
              src = fetchPypi {
                inherit pname version;
                sha256 = "sha256-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; # Replace with actual hash
              };
              doCheck = false;
              propagatedBuildInputs = [ ps.jupyter ps.pandas ];
            }
          )
        ]);
      in
      {
        devShells.default = pkgs.mkShell {
          buildInputs = with pkgs; [
            pythonEnv
            google-cloud-sdk
          ];
          
          shellHook = ''
            export PYTHONPATH=${pythonEnv}/${python.sitePackages}:$PYTHONPATH
            export PATH=${pythonEnv}/bin:$PATH
            echo "Gemini development environment activated!"
          '';
        };
      }
    );
}
  1. Enter the development shell:

nix develop

Method 2: Using configuration.nix (System-wide)

Add the following to your configuration.nix:

{ config, pkgs, ... }:

{
  environment.systemPackages = with pkgs; [
    (python311.withPackages (ps: with ps; [
      pip
      google-generativeai
      google-cloud-aiplatform
      jupyter
      # Other packages you need
    ]))
    google-cloud-sdk
  ];
}

Then rebuild your system:

sudo nixos-rebuild switch

Method 3: Using nix-shell (Project-specific)

Create a shell.nix file in your project directory:

{ pkgs ? import <nixpkgs> {} }:

let
  python = pkgs.python311;
  pythonEnv = python.withPackages (ps: with ps; [
    google-generativeai
    google-cloud-aiplatform
    jupyter
    pandas
    # Other packages you need
  ]);
in
pkgs.mkShell {
  buildInputs = with pkgs; [
    pythonEnv
    google-cloud-sdk
  ];
  
  shellHook = ''
    export PYTHONPATH=${pythonEnv}/${python.sitePackages}:$PYTHONPATH
    export GOOGLE_API_KEY="YOUR_API_KEY_HERE"  # Only for development!
  '';
}

Activate it with:

nix-shell

Authentication Configuration

Managing API Keys Securely with NixOS

For development, use environment variables:

# In your shell.nix
shellHook = ''
  # Load from a file not in version control
  export GOOGLE_API_KEY=$(cat ~/.config/gemini/api-key)
'';

For system-wide deployment, use NixOS secrets management:

{ config, ... }:

{
  age.secrets.gemini-api-key = {
    file = ./secrets/gemini-api-key.age;
    owner = "your-service-user";
  };
  
  systemd.services.your-gemini-service = {
    description = "Gemini AI Service";
    environment = {
      GOOGLE_API_KEY = "!cat ${config.age.secrets.gemini-api-key.path}";
    };
    # Service configuration continues...
  };
}

Service Integration

Creating a Gemini Service with systemd in NixOS

# In configuration.nix
{ config, pkgs, ... }:

{
  systemd.services.gemini-agent = {
    description = "Gemini AI Agent Service";
    after = [ "network.target" ];
    wantedBy = [ "multi-user.target" ];
    
    serviceConfig = {
      Type = "simple";
      User = "gemini-service";
      WorkingDirectory = "/var/lib/gemini-agent";
      ExecStart = "${pkgs.python311.withPackages (ps: with ps; [google-generativeai])}/bin/python /var/lib/gemini-agent/agent.py";
      Restart = "on-failure";
    };
    
    environment = {
      # Use agenix or similar for production secrets
      GOOGLE_API_KEY = "!cat /run/secrets/gemini-api-key";
    };
  };

  users.users.gemini-service = {
    isSystemUser = true;
    group = "gemini-service";
    home = "/var/lib/gemini-agent";
    createHome = true;
  };
  
  users.groups.gemini-service = {};
}

Verification & Testing

Test your setup with a simple script:

#!/usr/bin/env python
import google.generativeai as genai
import os

# Configure the API key
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

# Test the API with a NixOS-related prompt
model = genai.GenerativeModel('gemini-pro')
result = model.generate_content("Explain how Nix's reproducibility benefits DevOps teams.")

print(result.text)

Save as test.py and run:

chmod +x test.py
./test.py
🧠
Nix Flakes