DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • Contribute
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
          • Azure Authetication
            • Service Principal
            • Service Principal in block
            • Service Principal in env
        • AWS Scenarios
          • AWS Authentication
        • GCP Scenarios
          • GCP Authentication
      • Testing and Validation
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions
        • Azure Pipelines
        • GitLab CI
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
      • Docker
        • Dockerfile Best Practices
        • Docker Compose
      • Kubernetes
        • CLI Tools - Essential command-line utilities
          • Kubectl
          • Kubens
          • Kubectx
        • Core Concepts
        • Components
        • Best Practices
          • Pod Security
          • Security Monitoring
          • Resource Limits
        • Advanced Features - Beyond the basics [ADVANCED]
          • Service Mesh
            • Istio
            • Linkerd
          • Ingress Controllers
            • NGINX
            • Traefik
            • Kong
            • Gloo Edge
            • Contour
        • Tips
          • Status in Pods
          • Resource handling
          • Pod Troubleshooting Commands
        • Enterprise Architecture
        • Health Management
        • Security & Compliance
        • Virtual Clusters
      • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
      • Serverless Edge
      • IoT Edge Patterns
      • Real-Time Processing
      • Edge AI/ML
      • Security Hardening
      • Observability Patterns
      • Network Optimization
      • Storage Patterns
  • 🔄CI/CD & GitOps
    • CI/CD Overview
      • Continuous Integration
      • Continuous Delivery
        • Deployment Strategies
        • Secrets Management
        • Blue-Green Deployments
        • Deployment Metrics
        • Progressive Delivery
        • Release Management for DevOps/SRE (2025)
      • CI/CD Platforms - Tool selection and implementation
        • Azure DevOps
          • Pipelines
            • Stages
            • Jobs
            • Steps
            • Templates - Reusable pipeline components
            • Extends
            • Service Connections - External service authentication
            • Best Practices for 2025
            • Agents and Runners
            • Third-Party Integrations
            • Azure DevOps CLI
          • Boards & Work Items
        • GitHub Actions
        • GitLab
          • GitLab Runner
          • Real-life scenarios
          • Installation guides
          • Pros and Cons
          • Comparison with alternatives
      • GitOps
        • Modern GitOps Practices
        • GitOps Patterns for Multi-Cloud (2025)
        • Flux
          • Overview
          • Progressive Delivery
          • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
      • Git Branching Strategies
      • Component Versioning
      • Kubernetes Manifest Versioning
      • GitLab
      • Creating a Fork
      • Naming Branches
      • Pull Requests
      • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
      • AWS to Azure
      • Azure to AWS
      • GCP to Azure
      • AWS to GCP
      • GCP to AWS
    • Azure
      • Best Practices
        • Azure Best Practices Overview
        • Azure Architecture Best Practices
        • Azure Naming Standards
        • Azure Tags
        • Azure Security Best Practices
      • Landing Zones
      • Services
        • Azure Active Directory (AAD)
        • Azure Monitor
        • Azure Key Vault
        • Azure Service Bus
        • Azure DNS
        • Azure App Service
        • Azure Batch
        • Azure Machine Learning
        • Azure OpenAI Service
        • Azure Cognitive Services
        • Azure Kubernetes Service (AKS)
        • Azure Databricks
        • Azure SQL Database
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
      • Services
        • AWS IAM (Identity and Access Management)
        • Amazon CloudWatch
        • Amazon SNS (Simple Notification Service)
        • Amazon SQS (Simple Queue Service)
        • Amazon Route 53
        • AWS Elastic Beanstalk
        • AWS Batch
        • Amazon SageMaker
        • Amazon Bedrock
        • Amazon Comprehend
    • Google Cloud
      • Services
        • Cloud CDN
        • Cloud DNS
        • Cloud Load Balancing
        • Google Kubernetes Engine (GKE)
        • Cloud Run
        • Artifact Registry
        • Compute Engine
        • Cloud Functions
        • App Engine
        • Cloud Storage
        • Persistent Disk
        • Filestore
        • Cloud SQL
        • Cloud Spanner
        • Firestore
        • Bigtable
        • BigQuery
        • VPC (Virtual Private Cloud)
  • 🔐Security & Compliance
    • DevSecOps Overview
      • DevSecOps Pipeline Security
      • DevSecOps
        • Real-life Examples
        • Scanning & Protection - Automated security tooling
          • Dependency Scanning
          • Credential Scanning
          • Container Security Scanning
          • Static Code Analysis
            • Best Practices
            • Tool Integration Guide
            • Pipeline Configuration
        • CI/CD Security
        • Secrets Rotation
      • Supply Chain Security
        • SLSA Framework
        • Binary Authorization
        • Artifact Signing
      • Security Best Practices
        • Threat Modeling
        • Kubernetes Security
      • SecOps
      • Zero Trust Model
      • Cloud Compliance
        • ISO/IEC 27001:2022
        • ISO 22301:2019
        • PCI DSS
        • CSA STAR
      • Security Frameworks
      • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
      • Logging
      • Metrics
      • Tracing
      • Dashboards
      • SLOs and SLAs
      • Observability as Code
      • Pipeline Observability
  • 🧪Testing Strategies
    • Testing Overview
      • Modern Testing Approaches
      • End-to-End Testing
      • Unit Testing
      • Performance Testing
        • Load Testing
      • Fault Injection Testing
      • Integration Testing
      • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
      • Claude
        • Installation Guide
        • Project Guides
        • MCP Server Setup
        • LLM Comparison
      • Ollama
        • Installation Guide
        • Configuration
        • Models and Fine-tuning
        • DevOps Usage
        • Docker Setup
        • GPU Setup
        • Open WebUI
      • Copilot
        • Installation Guide
        • VS Code Integration
        • CLI Usage
      • Gemini
        • Installation Guides - Platform-specific setup
          • Linux Installation
          • WSL Installation
          • NixOS Installation
        • Gemini 2.5 Features
        • Roles and Agents
        • NotebookML Guide
        • Cloud Infrastructure Deployment
        • Summary
  • 💻Development Environment
    • DevOps Tools
      • Operating Systems - Development platforms
        • NixOS
          • Install NixOS: PC, Mac, WSL
          • Nix Language Deep Dive
          • Nix Language Fundamentals
            • Nix Functions and Techniques
            • Building Packages with Nix
            • NixOS Configuration Patterns
            • Flakes: The Future of Nix
          • NixOS Generators: Azure & QEMU
        • WSL2
          • Distributions
          • Terminal Setup
      • Editor Environments
      • CLI Tools
        • Azure CLI
        • PowerShell
        • Linux Commands
          • SSH - Secure Shell)
            • SSH Config
            • SSH Port Forwarding
        • Linux Fundametals
        • Cloud init
          • Cloud init examples
        • YAML Tools
          • How to create a k8s yaml file - How to create YAML config
          • YQ the tool
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Should Learn
    • Should Learn
    • Linux
      • Commands
      • OS
      • Services
    • Terraform
    • Getting Started - Installation and initial setup [BEGINNER]
    • Cloud Integrations
    • Testing and Validation - Ensuring infrastructure quality
      • Unit Testing
      • Integration Testing
      • End-to-End Testing
      • Terratest Guide
    • Best Practices - Production-ready implementation strategies
      • State Management
      • Security
      • Code Organization
      • Performance
    • Tools & Utilities
    • CI/CD Integration
    • Bicep
    • Kubernetes
      • kubectl
    • Ansible
    • Puppet
    • Java
    • Rust
    • Azure CLI
  • 📖Documentation Best Practices
    • Documentation Strategy
      • Project Documentation
      • Release Notes
      • Static Sites
      • Documentation Templates
      • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Tool Decision Guides
    • Recommended Reading
    • Troubleshooting Guide
    • Development Setup
Powered by GitBook
On this page
  • Table of Contents
  • CPU Resources
  • CPU Requests and Limits with YAML
  • Impact of Exceeding CPU Limits
  • Memory Resources
  • Memory Requests and Limits with YAML
  • Impact of Exceeding Memory Limits
  • Commands
  • Real-Life Examples
  • Example 1: Setting Resource Requests and Limits for a Deployment
  • Example 2: Observing OOMKilled Events
  • Example 3: Troubleshooting High Resource Usage
  • Example 4: Enforcing Resource Quotas (Namespace Level)
  • Best Practices
  • References
Edit on GitHub
  1. Containers & Orchestration
  2. Containerization Overview
  3. Kubernetes
  4. Tips

Resource handling

PreviousStatus in PodsNextPod Troubleshooting Commands

Last updated 3 days ago

Kubernetes uses YAML files to specify resource requirements for pods and containers, including CPU and memory resources. CPU resources are allocated using CPU requests and CPU limits in millicores. If a container exceeds the CPU limit, it will be throttled by the kernel. Memory resources are allocated using memory requests and memory limits in units such as bytes, kilobytes, megabytes, or gigabytes. If a container exceeds its memory limit, Kubernetes will terminate and restart it, which is known as an OOMKilled event. Properly configuring memory limits is important to avoid degraded performance and downtime.

Kubernetes: Resources for Pods and Containers

Table of Contents

Resource requirements for pods and containers in Kubernetes can be specified in the YAML file. Kubernetes uses this information to schedule and manage the deployment of the pod or container across the available nodes in the cluster.

CPU Resources

In Kubernetes, CPU resources can be allocated to Pods and containers to ensure that they have the required processing power to run their applications. CPU resources are defined using the CPU resource units (millicores or milliCPU) and can be specified as CPU requests and CPU limits.

CPU Requests and Limits with YAML

pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: my-container
    image: my-image
    resources:
      requests:
        cpu: "100m"
      limits:
        cpu: "200m"

This example specifies a pod with a single container that has a CPU request of 100 millicores (100m) and a CPU limit of 200 millicores (200m):

Impact of Exceeding CPU Limits

If a container tries to exceed its CPU request, it will be scheduled on a node that has enough CPU resources to satisfy the request. However, if a container tries to exceed its CPU limit, it will be throttled by the kernel. This can cause the container to become unresponsive, leading to degraded performance and potentially impacting other containers running on the same node.

Memory Resources

In Kubernetes, memory resources can be allocated to Pods and containers to ensure that they have the required memory to run their applications. Memory resources are defined using the memory resource units (such as bytes, kilobytes, megabytes, or gigabytes) and can be specified as memory requests and memory limits.

Memory Requests and Limits with YAML

pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: my-container
    image: my-image
    resources:
      requests:
        memory: "64Mi"
      limits:
        memory: "128Mi"

This example specifies a pod with a single container that has a memory request of 64 megabytes (64Mi) and a memory limit of 128 megabytes (128Mi).

Impact of Exceeding Memory Limits

When a container exceeds its memory limit in Kubernetes, it is terminated and restarted by Kubernetes. This event is known as OOMKilled, which stands for Out Of Memory Killed. This happens when a container or a pod consumes all the available memory resources allocated to it, and the kernel terminates it to prevent it from consuming more memory and impacting the stability of the node. It is important to properly configure memory limits for containers and pods to avoid OOMKilled events, as they can lead to degraded performance and downtime.

Commands

  1. Check the CPU and memory usage for all Pods

kubectl top pods -A

Output columns:

NAMESPACE     NAME    CPU(cores)   MEMORY(bytes)
  1. Find the pod that consumes the most CPU resources

kubectl top pods -A --no-headers | sort --reverse --key 3 | head -n 1
kubectl top pods -A --no-headers | sort -nr -k3 | head -1
  1. Find the pod that consumes the most memory resources

kubectl top pods -A --no-headers | sort --reverse --key 4 | head -n 1
kubectl top pods -A --no-headers | sort -nr -k4 | head -1
  1. Check the CPU and memory usage of Nodes

kubectl top nodes

Output columns:

NAME    CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%

Real-Life Examples

Example 1: Setting Resource Requests and Limits for a Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
  name: webapp
spec:
  replicas: 3
  selector:
    matchLabels:
      app: webapp
  template:
    metadata:
      labels:
        app: webapp
    spec:
      containers:
      - name: webapp
        image: nginx:1.25
        resources:
          requests:
            cpu: "250m"
            memory: "128Mi"
          limits:
            cpu: "500m"
            memory: "256Mi"

Example 2: Observing OOMKilled Events

If a container exceeds its memory limit, it will be restarted with an OOMKilled event. To check for this:

kubectl get pods --all-namespaces | grep OOMKilled
kubectl describe pod <pod-name> | grep -A5 State

Example 3: Troubleshooting High Resource Usage

Find the top CPU and memory consumers:

kubectl top pods -A --sort-by=cpu | head -n 10
kubectl top pods -A --sort-by=memory | head -n 10

Example 4: Enforcing Resource Quotas (Namespace Level)

apiVersion: v1
kind: ResourceQuota
metadata:
  name: devops-quota
  namespace: devops-tools
spec:
  hard:
    requests.cpu: "2"
    requests.memory: 2Gi
    limits.cpu: "4"
    limits.memory: 4Gi

Apply with:

kubectl apply -f resource-quota.yaml

Best Practices

  • Always set both requests and limits for CPU and memory in production workloads.

  • Use kubectl top and monitoring tools (Prometheus, Grafana, Datadog) to observe real usage.

  • Set namespace-level ResourceQuotas to prevent noisy neighbor problems.

  • Avoid setting limits too low (causes throttling/OOMKilled) or too high (wastes resources).

  • Document resource requirements in your Git repository for reproducibility.


References

Tip: Use CI/CD (GitHub Actions, GitLab CI, Azure Pipelines) to validate resource settings and catch misconfigurations before deploying to production.

OOMKilled
commands

Use for dynamic resource tuning.

🐳
Vertical Pod Autoscaler
Kubernetes Resource Management Docs
kubectl top Reference
OOMKilled Troubleshooting
Resource Quotas
CPU Resources
Memory Resources
Commands
Real-Life Examples
Best Practices
References