DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • Contribute
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
          • Azure Authetication
            • Service Principal
            • Service Principal in block
            • Service Principal in env
        • AWS Scenarios
          • AWS Authentication
        • GCP Scenarios
          • GCP Authentication
      • Testing and Validation
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions
        • Azure Pipelines
        • GitLab CI
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
      • Docker
        • Dockerfile Best Practices
        • Docker Compose
      • Kubernetes
        • CLI Tools - Essential command-line utilities
          • Kubectl
          • Kubens
          • Kubectx
        • Core Concepts
        • Components
        • Best Practices
          • Pod Security
          • Security Monitoring
          • Resource Limits
        • Advanced Features - Beyond the basics [ADVANCED]
          • Service Mesh
            • Istio
            • Linkerd
          • Ingress Controllers
            • NGINX
            • Traefik
            • Kong
            • Gloo Edge
            • Contour
        • Tips
          • Status in Pods
          • Resource handling
          • Pod Troubleshooting Commands
        • Enterprise Architecture
        • Health Management
        • Security & Compliance
        • Virtual Clusters
      • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
      • Serverless Edge
      • IoT Edge Patterns
      • Real-Time Processing
      • Edge AI/ML
      • Security Hardening
      • Observability Patterns
      • Network Optimization
      • Storage Patterns
  • 🔄CI/CD & GitOps
    • CI/CD Overview
      • Continuous Integration
      • Continuous Delivery
        • Deployment Strategies
        • Secrets Management
        • Blue-Green Deployments
        • Deployment Metrics
        • Progressive Delivery
        • Release Management for DevOps/SRE (2025)
      • CI/CD Platforms - Tool selection and implementation
        • Azure DevOps
          • Pipelines
            • Stages
            • Jobs
            • Steps
            • Templates - Reusable pipeline components
            • Extends
            • Service Connections - External service authentication
            • Best Practices for 2025
            • Agents and Runners
            • Third-Party Integrations
            • Azure DevOps CLI
          • Boards & Work Items
        • GitHub Actions
        • GitLab
          • GitLab Runner
          • Real-life scenarios
          • Installation guides
          • Pros and Cons
          • Comparison with alternatives
      • GitOps
        • Modern GitOps Practices
        • GitOps Patterns for Multi-Cloud (2025)
        • Flux
          • Overview
          • Progressive Delivery
          • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
      • Git Branching Strategies
      • Component Versioning
      • Kubernetes Manifest Versioning
      • GitLab
      • Creating a Fork
      • Naming Branches
      • Pull Requests
      • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
      • AWS to Azure
      • Azure to AWS
      • GCP to Azure
      • AWS to GCP
      • GCP to AWS
    • Azure
      • Best Practices
        • Azure Best Practices Overview
        • Azure Architecture Best Practices
        • Azure Naming Standards
        • Azure Tags
        • Azure Security Best Practices
      • Landing Zones
      • Services
        • Azure Active Directory (AAD)
        • Azure Monitor
        • Azure Key Vault
        • Azure Service Bus
        • Azure DNS
        • Azure App Service
        • Azure Batch
        • Azure Machine Learning
        • Azure OpenAI Service
        • Azure Cognitive Services
        • Azure Kubernetes Service (AKS)
        • Azure Databricks
        • Azure SQL Database
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
      • Services
        • AWS IAM (Identity and Access Management)
        • Amazon CloudWatch
        • Amazon SNS (Simple Notification Service)
        • Amazon SQS (Simple Queue Service)
        • Amazon Route 53
        • AWS Elastic Beanstalk
        • AWS Batch
        • Amazon SageMaker
        • Amazon Bedrock
        • Amazon Comprehend
    • Google Cloud
      • Services
        • Cloud CDN
        • Cloud DNS
        • Cloud Load Balancing
        • Google Kubernetes Engine (GKE)
        • Cloud Run
        • Artifact Registry
        • Compute Engine
        • Cloud Functions
        • App Engine
        • Cloud Storage
        • Persistent Disk
        • Filestore
        • Cloud SQL
        • Cloud Spanner
        • Firestore
        • Bigtable
        • BigQuery
        • VPC (Virtual Private Cloud)
  • 🔐Security & Compliance
    • DevSecOps Overview
      • DevSecOps Pipeline Security
      • DevSecOps
        • Real-life Examples
        • Scanning & Protection - Automated security tooling
          • Dependency Scanning
          • Credential Scanning
          • Container Security Scanning
          • Static Code Analysis
            • Best Practices
            • Tool Integration Guide
            • Pipeline Configuration
        • CI/CD Security
        • Secrets Rotation
      • Supply Chain Security
        • SLSA Framework
        • Binary Authorization
        • Artifact Signing
      • Security Best Practices
        • Threat Modeling
        • Kubernetes Security
      • SecOps
      • Zero Trust Model
      • Cloud Compliance
        • ISO/IEC 27001:2022
        • ISO 22301:2019
        • PCI DSS
        • CSA STAR
      • Security Frameworks
      • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
      • Logging
      • Metrics
      • Tracing
      • Dashboards
      • SLOs and SLAs
      • Observability as Code
      • Pipeline Observability
  • 🧪Testing Strategies
    • Testing Overview
      • Modern Testing Approaches
      • End-to-End Testing
      • Unit Testing
      • Performance Testing
        • Load Testing
      • Fault Injection Testing
      • Integration Testing
      • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
      • Claude
        • Installation Guide
        • Project Guides
        • MCP Server Setup
        • LLM Comparison
      • Ollama
        • Installation Guide
        • Configuration
        • Models and Fine-tuning
        • DevOps Usage
        • Docker Setup
        • GPU Setup
        • Open WebUI
      • Copilot
        • Installation Guide
        • VS Code Integration
        • CLI Usage
      • Gemini
        • Installation Guides - Platform-specific setup
          • Linux Installation
          • WSL Installation
          • NixOS Installation
        • Gemini 2.5 Features
        • Roles and Agents
        • NotebookML Guide
        • Cloud Infrastructure Deployment
        • Summary
  • 💻Development Environment
    • DevOps Tools
      • Operating Systems - Development platforms
        • NixOS
          • Install NixOS: PC, Mac, WSL
          • Nix Language Deep Dive
          • Nix Language Fundamentals
            • Nix Functions and Techniques
            • Building Packages with Nix
            • NixOS Configuration Patterns
            • Flakes: The Future of Nix
          • NixOS Generators: Azure & QEMU
        • WSL2
          • Distributions
          • Terminal Setup
      • Editor Environments
      • CLI Tools
        • Azure CLI
        • PowerShell
        • Linux Commands
          • SSH - Secure Shell)
            • SSH Config
            • SSH Port Forwarding
        • Linux Fundametals
        • Cloud init
          • Cloud init examples
        • YAML Tools
          • How to create a k8s yaml file - How to create YAML config
          • YQ the tool
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Should Learn
    • Should Learn
    • Linux
      • Commands
      • OS
      • Services
    • Terraform
    • Getting Started - Installation and initial setup [BEGINNER]
    • Cloud Integrations
    • Testing and Validation - Ensuring infrastructure quality
      • Unit Testing
      • Integration Testing
      • End-to-End Testing
      • Terratest Guide
    • Best Practices - Production-ready implementation strategies
      • State Management
      • Security
      • Code Organization
      • Performance
    • Tools & Utilities
    • CI/CD Integration
    • Bicep
    • Kubernetes
      • kubectl
    • Ansible
    • Puppet
    • Java
    • Rust
    • Azure CLI
  • 📖Documentation Best Practices
    • Documentation Strategy
      • Project Documentation
      • Release Notes
      • Static Sites
      • Documentation Templates
      • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Tool Decision Guides
    • Recommended Reading
    • Troubleshooting Guide
    • Development Setup
Powered by GitBook
On this page
  • Key Features
  • Architecture Overview
  • Common Use Cases
  • Example: Deploying Bigtable with Terraform
  • Example: Writing and Reading Data (Python)
  • Best Practices
  • References
Edit on GitHub
  1. Cloud Platforms
  2. Google Cloud
  3. Services

Bigtable

Google Cloud Bigtable is GCP’s fully managed, scalable, and high-performance wide-column NoSQL database service. It is designed for large analytical and operational workloads, such as time-series data, IoT, financial data, and user analytics.

Key Features

  • Massive scalability: Handles petabytes of data and millions of reads/writes per second

  • Low latency: Consistent single-digit millisecond response times

  • Fully managed: No server management, automatic scaling, patching, and backups

  • HBase API compatibility: Migrate HBase workloads with minimal changes

  • Seamless GCP integration: Works with Dataflow, Dataproc, BigQuery, and more

  • Replication: Multi-region replication for high availability

Architecture Overview

  • Table: Contains rows, each identified by a unique row key

  • Column families: Group related columns for storage and performance tuning

  • Cells: Intersection of row and column, can store multiple timestamped versions

  • Clusters: Compute resources in one or more GCP regions

Common Use Cases

  • Time-series data (IoT, monitoring, financial ticks)

  • Real-time analytics and personalization

  • Large-scale graph or recommendation engines

  • User profile and event data storage

Example: Deploying Bigtable with Terraform

resource "google_bigtable_instance" "main" {
  name          = "my-bigtable-instance"
  instance_type = "PRODUCTION"
  cluster {
    cluster_id   = "my-bigtable-cluster"
    zone         = "us-central1-b"
    num_nodes    = 3
    storage_type = "SSD"
  }
}

resource "google_bigtable_table" "users" {
  name          = "users"
  instance_name = google_bigtable_instance.main.name
  column_family {
    family = "profile"
  }
  column_family {
    family = "activity"
  }
}

Example: Writing and Reading Data (Python)

from google.cloud import bigtable
client = bigtable.Client(project="my-project", admin=True)
instance = client.instance("my-bigtable-instance")
table = instance.table("users")

# Write a row
direct_row = table.direct_row("user#1234")
direct_row.set_cell("profile", "name", "Alice")
direct_row.set_cell("activity", "last_login", "2024-06-01T12:00:00Z")
direct_row.commit()

# Read a row
row = table.read_row("user#1234")
print(row.cells["profile"][b"name"][0].value)

Best Practices

  • Row key design: Distribute writes evenly to avoid hotspots (e.g., use hashed prefixes)

  • Column family planning: Group columns with similar access patterns

  • Monitor performance: Use GCP Monitoring for CPU, storage, and latency

  • Backup and restore: Use scheduled backups for disaster recovery

References

PreviousFirestoreNextBigQuery

Last updated 4 days ago

☁️
Bigtable Documentation
Schema Design Best Practices
Terraform Bigtable Provider