DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • Contribute
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
          • Azure Authetication
            • Service Principal
            • Service Principal in block
            • Service Principal in env
        • AWS Scenarios
          • AWS Authentication
        • GCP Scenarios
          • GCP Authentication
      • Testing and Validation
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions
        • Azure Pipelines
        • GitLab CI
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
      • Docker
        • Dockerfile Best Practices
        • Docker Compose
      • Kubernetes
        • CLI Tools - Essential command-line utilities
          • Kubectl
          • Kubens
          • Kubectx
        • Core Concepts
        • Components
        • Best Practices
          • Pod Security
          • Security Monitoring
          • Resource Limits
        • Advanced Features - Beyond the basics [ADVANCED]
          • Service Mesh
            • Istio
            • Linkerd
          • Ingress Controllers
            • NGINX
            • Traefik
            • Kong
            • Gloo Edge
            • Contour
        • Tips
          • Status in Pods
          • Resource handling
          • Pod Troubleshooting Commands
        • Enterprise Architecture
        • Health Management
        • Security & Compliance
        • Virtual Clusters
      • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
      • Serverless Edge
      • IoT Edge Patterns
      • Real-Time Processing
      • Edge AI/ML
      • Security Hardening
      • Observability Patterns
      • Network Optimization
      • Storage Patterns
  • 🔄CI/CD & GitOps
    • CI/CD Overview
      • Continuous Integration
      • Continuous Delivery
        • Deployment Strategies
        • Secrets Management
        • Blue-Green Deployments
        • Deployment Metrics
        • Progressive Delivery
        • Release Management for DevOps/SRE (2025)
      • CI/CD Platforms - Tool selection and implementation
        • Azure DevOps
          • Pipelines
            • Stages
            • Jobs
            • Steps
            • Templates - Reusable pipeline components
            • Extends
            • Service Connections - External service authentication
            • Best Practices for 2025
            • Agents and Runners
            • Third-Party Integrations
            • Azure DevOps CLI
          • Boards & Work Items
        • GitHub Actions
        • GitLab
          • GitLab Runner
          • Real-life scenarios
          • Installation guides
          • Pros and Cons
          • Comparison with alternatives
      • GitOps
        • Modern GitOps Practices
        • GitOps Patterns for Multi-Cloud (2025)
        • Flux
          • Overview
          • Progressive Delivery
          • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
      • Git Branching Strategies
      • Component Versioning
      • Kubernetes Manifest Versioning
      • GitLab
      • Creating a Fork
      • Naming Branches
      • Pull Requests
      • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
      • AWS to Azure
      • Azure to AWS
      • GCP to Azure
      • AWS to GCP
      • GCP to AWS
    • Azure
      • Best Practices
        • Azure Best Practices Overview
        • Azure Architecture Best Practices
        • Azure Naming Standards
        • Azure Tags
        • Azure Security Best Practices
      • Landing Zones
      • Services
        • Azure Active Directory (AAD)
        • Azure Monitor
        • Azure Key Vault
        • Azure Service Bus
        • Azure DNS
        • Azure App Service
        • Azure Batch
        • Azure Machine Learning
        • Azure OpenAI Service
        • Azure Cognitive Services
        • Azure Kubernetes Service (AKS)
        • Azure Databricks
        • Azure SQL Database
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
      • Services
        • AWS IAM (Identity and Access Management)
        • Amazon CloudWatch
        • Amazon SNS (Simple Notification Service)
        • Amazon SQS (Simple Queue Service)
        • Amazon Route 53
        • AWS Elastic Beanstalk
        • AWS Batch
        • Amazon SageMaker
        • Amazon Bedrock
        • Amazon Comprehend
    • Google Cloud
      • Services
        • Cloud CDN
        • Cloud DNS
        • Cloud Load Balancing
        • Google Kubernetes Engine (GKE)
        • Cloud Run
        • Artifact Registry
        • Compute Engine
        • Cloud Functions
        • App Engine
        • Cloud Storage
        • Persistent Disk
        • Filestore
        • Cloud SQL
        • Cloud Spanner
        • Firestore
        • Bigtable
        • BigQuery
        • VPC (Virtual Private Cloud)
  • 🔐Security & Compliance
    • DevSecOps Overview
      • DevSecOps Pipeline Security
      • DevSecOps
        • Real-life Examples
        • Scanning & Protection - Automated security tooling
          • Dependency Scanning
          • Credential Scanning
          • Container Security Scanning
          • Static Code Analysis
            • Best Practices
            • Tool Integration Guide
            • Pipeline Configuration
        • CI/CD Security
        • Secrets Rotation
      • Supply Chain Security
        • SLSA Framework
        • Binary Authorization
        • Artifact Signing
      • Security Best Practices
        • Threat Modeling
        • Kubernetes Security
      • SecOps
      • Zero Trust Model
      • Cloud Compliance
        • ISO/IEC 27001:2022
        • ISO 22301:2019
        • PCI DSS
        • CSA STAR
      • Security Frameworks
      • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
      • Logging
      • Metrics
      • Tracing
      • Dashboards
      • SLOs and SLAs
      • Observability as Code
      • Pipeline Observability
  • 🧪Testing Strategies
    • Testing Overview
      • Modern Testing Approaches
      • End-to-End Testing
      • Unit Testing
      • Performance Testing
        • Load Testing
      • Fault Injection Testing
      • Integration Testing
      • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
      • Claude
        • Installation Guide
        • Project Guides
        • MCP Server Setup
        • LLM Comparison
      • Ollama
        • Installation Guide
        • Configuration
        • Models and Fine-tuning
        • DevOps Usage
        • Docker Setup
        • GPU Setup
        • Open WebUI
      • Copilot
        • Installation Guide
        • VS Code Integration
        • CLI Usage
      • Gemini
        • Installation Guides - Platform-specific setup
          • Linux Installation
          • WSL Installation
          • NixOS Installation
        • Gemini 2.5 Features
        • Roles and Agents
        • NotebookML Guide
        • Cloud Infrastructure Deployment
        • Summary
  • 💻Development Environment
    • DevOps Tools
      • Operating Systems - Development platforms
        • NixOS
          • Install NixOS: PC, Mac, WSL
          • Nix Language Deep Dive
          • Nix Language Fundamentals
            • Nix Functions and Techniques
            • Building Packages with Nix
            • NixOS Configuration Patterns
            • Flakes: The Future of Nix
          • NixOS Generators: Azure & QEMU
        • WSL2
          • Distributions
          • Terminal Setup
      • Editor Environments
      • CLI Tools
        • Azure CLI
        • PowerShell
        • Linux Commands
          • SSH - Secure Shell)
            • SSH Config
            • SSH Port Forwarding
        • Linux Fundametals
        • Cloud init
          • Cloud init examples
        • YAML Tools
          • How to create a k8s yaml file - How to create YAML config
          • YQ the tool
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Should Learn
    • Should Learn
    • Linux
      • Commands
      • OS
      • Services
    • Terraform
    • Getting Started - Installation and initial setup [BEGINNER]
    • Cloud Integrations
    • Testing and Validation - Ensuring infrastructure quality
      • Unit Testing
      • Integration Testing
      • End-to-End Testing
      • Terratest Guide
    • Best Practices - Production-ready implementation strategies
      • State Management
      • Security
      • Code Organization
      • Performance
    • Tools & Utilities
    • CI/CD Integration
    • Bicep
    • Kubernetes
      • kubectl
    • Ansible
    • Puppet
    • Java
    • Rust
    • Azure CLI
  • 📖Documentation Best Practices
    • Documentation Strategy
      • Project Documentation
      • Release Notes
      • Static Sites
      • Documentation Templates
      • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Tool Decision Guides
    • Recommended Reading
    • Troubleshooting Guide
    • Development Setup
Powered by GitBook
On this page
  • Why Load Testing
  • Key Components of Load Testing
  • Load Testing Workflow
  • 1. Planning
  • 2. Test Design & Execution
  • 3. Analysis & Reporting
  • 4. Follow-up Testing
  • Modern Load Testing Tools (2025)
  • Example: k6 Load Test Script
  • Example: Azure Load Testing YAML
  • Best Practices (2025)
  • References
Edit on GitHub
  1. Testing Strategies
  2. Testing Overview
  3. Performance Testing

Load Testing

PreviousPerformance TestingNextFault Injection Testing

Last updated 5 days ago

Load testing is performed to determine a system's behavior under both normal and anticipated peak load conditions. —

Load testing evaluates how a system performs under expected and peak workloads. Its main goal is to confirm the system can handle real-world traffic, such as concurrent users, requests per second, or data volume, without performance degradation.


Nerdy Joke: Why did the server go to therapy after load testing? Because it couldn't handle the pressure and needed to process its requests!


Why Load Testing

  • Validate reliability: Ensure the system remains available and responsive under normal and peak loads.

  • Meet SLAs: Confirm response times, error rates, and throughput meet business requirements.

  • Capacity planning: Use results to inform scaling decisions and infrastructure investments.

  • Identify bottlenecks: Detect performance issues before production.

Key Components of Load Testing

  1. Production-like environment: Test in an environment that closely matches production (network, hardware, cloud region, etc.).

  2. Realistic user simulation: Simulate user activity that mirrors real-world usage patterns (e.g., browsing, purchasing, API calls, IoT data ingestion). Avoid overly uniform or predictable data to ensure accurate cache and hit ratio results.

  3. Scalable load generation: Use one or more agents to generate the required load. For large-scale tests, distribute agents across regions or cloud providers.

  4. Comprehensive monitoring: Integrate monitoring and logging to capture system metrics (CPU, memory, network, latency, error rates) and identify bottlenecks.

Load Testing Workflow

1. Planning

  • Identify critical scenarios: Work with stakeholders to select representative user journeys and API calls.

  • Define load profiles: Determine normal and peak loads (e.g., 500 concurrent users, 1000 RPS).

  • Set success criteria: Establish thresholds for response time, error rate, resource utilization, and throughput.

  • Select tools: Choose a load testing tool that fits your stack and requirements (see below).

2. Test Design & Execution

  • Script user scenarios: Use your chosen tool to define realistic workflows.

  • Ramp up gradually: Start with low load, increase to target, and hold steady to observe system behavior. Optionally, ramp down to observe recovery.

  • Distribute load: For global systems, generate load from multiple regions to simulate real user traffic.

  • Monitor in real time: Track system and application metrics during the test.

3. Analysis & Reporting

  • Analyze results: Compare metrics against success criteria. Look for slow responses, errors, resource saturation, and scaling issues.

  • Identify root causes: Use logs, traces, and monitoring dashboards to pinpoint bottlenecks.

  • Document findings: Summarize results, highlight issues, and recommend improvements.

4. Follow-up Testing

  • Soak (Endurance) Testing: Run load tests over extended periods to detect memory leaks and stability issues.

  • Stress Testing: Increase load beyond peak to find system limits and failure points.

  • Spike Testing: Introduce sudden load surges to test resilience.

  • Scalability Testing: Re-test after scaling infrastructure to validate improvements.

Modern Load Testing Tools (2025)

Tool
Language
Cloud/CI Integration
Notes

Azure Load Testing

JMeter/YAML

Azure DevOps, GitHub Actions

Managed, supports private endpoints

AWS Distributed Load Testing

JMeter

AWS CodePipeline, CLI

Scalable, integrates with CloudWatch

Google Cloud DLT

JMeter

Cloud Build, CLI

Managed, integrates with GCP metrics

k6

JavaScript

All major CI/CD, Kubernetes

Modern, cloud-native, Grafana Cloud

Locust

Python

All major CI/CD, Docker

Flexible, distributed, Pythonic

Artillery

JavaScript

Node.js, CI/CD, AWS Lambda

Lightweight, serverless support

Gatling

Scala/Java

Jenkins, GitHub Actions

High performance, detailed reports

JMeter

Java

All major CI/CD, CLI

Mature, extensible, large ecosystem

NBomber

C#/F#

.NET, CI/CD

.NET-native, integrates with test runners

Tip: For cloud-native systems, prefer tools that support distributed execution, containerization, and integration with cloud monitoring (e.g., Prometheus, Grafana, CloudWatch).

Example: k6 Load Test Script

import http from 'k6/http';
import { check, sleep } from 'k6';

export let options = {
  stages: [
    { duration: '2m', target: 50 },   // Ramp-up
    { duration: '5m', target: 200 },  // Peak load
    { duration: '2m', target: 0 },    // Ramp-down
  ],
  thresholds: {
    http_req_duration: ['p(95)<500'], // 95% of requests < 500ms
    http_req_failed: ['rate<0.01'],   // <1% errors
  },
};

export default function () {
  const res = http.get('https://api.example.com/health');
  check(res, {
    'status is 200': (r) => r.status === 200,
  });
  sleep(1);
}

Example: Azure Load Testing YAML

# azure-load-test.yaml
resources:
  - name: load-test
    type: Microsoft.LoadTestService/loadTests
    properties:
      description: "API Load Test"
      loadTestConfig:
        engineInstances: 2
        testPlan: "loadtest.jmx"
      secrets:
        - name: "endpoint"
          value: "https://api.example.com"

Best Practices (2025)

  • Automate load tests in CI/CD: Run load tests on every major release using GitHub Actions, Azure Pipelines, or your preferred CI/CD tool.

  • Use Infrastructure as Code: Provision test environments with Terraform or ARM/Bicep templates for consistency.

  • Monitor everything: Integrate with Prometheus, Grafana, CloudWatch, or Azure Monitor for real-time insights.

  • Test from multiple regions: Use cloud-based agents to simulate global traffic patterns.

  • Leverage LLMs: Use LLMs to generate test scenarios, analyze logs, and suggest optimizations.

  • Document and iterate: Keep detailed records of test results and continuously refine your scenarios.

References


Load testing is essential for ensuring your system can handle real-world traffic and scale reliably. By following modern best practices and leveraging cloud-native tools, you can confidently deliver performant, resilient applications.

🧪
Load testing - Wikipedia
Azure Load Testing Documentation
k6 Documentation
AWS Distributed Load Testing
Google Cloud DLT