DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • Contribute
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
          • Azure Authetication
            • Service Principal
            • Service Principal in block
            • Service Principal in env
        • AWS Scenarios
          • AWS Authentication
        • GCP Scenarios
          • GCP Authentication
      • Testing and Validation
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions
        • Azure Pipelines
        • GitLab CI
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
      • Docker
        • Dockerfile Best Practices
        • Docker Compose
      • Kubernetes
        • CLI Tools - Essential command-line utilities
          • Kubectl
          • Kubens
          • Kubectx
        • Core Concepts
        • Components
        • Best Practices
          • Pod Security
          • Security Monitoring
          • Resource Limits
        • Advanced Features - Beyond the basics [ADVANCED]
          • Service Mesh
            • Istio
            • Linkerd
          • Ingress Controllers
            • NGINX
            • Traefik
            • Kong
            • Gloo Edge
            • Contour
        • Tips
          • Status in Pods
          • Resource handling
          • Pod Troubleshooting Commands
        • Enterprise Architecture
        • Health Management
        • Security & Compliance
        • Virtual Clusters
      • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
      • Serverless Edge
      • IoT Edge Patterns
      • Real-Time Processing
      • Edge AI/ML
      • Security Hardening
      • Observability Patterns
      • Network Optimization
      • Storage Patterns
  • 🔄CI/CD & GitOps
    • CI/CD Overview
      • Continuous Integration
      • Continuous Delivery
        • Deployment Strategies
        • Secrets Management
        • Blue-Green Deployments
        • Deployment Metrics
        • Progressive Delivery
        • Release Management for DevOps/SRE (2025)
      • CI/CD Platforms - Tool selection and implementation
        • Azure DevOps
          • Pipelines
            • Stages
            • Jobs
            • Steps
            • Templates - Reusable pipeline components
            • Extends
            • Service Connections - External service authentication
            • Best Practices for 2025
            • Agents and Runners
            • Third-Party Integrations
            • Azure DevOps CLI
          • Boards & Work Items
        • GitHub Actions
        • GitLab
          • GitLab Runner
          • Real-life scenarios
          • Installation guides
          • Pros and Cons
          • Comparison with alternatives
      • GitOps
        • Modern GitOps Practices
        • GitOps Patterns for Multi-Cloud (2025)
        • Flux
          • Overview
          • Progressive Delivery
          • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
      • Git Branching Strategies
      • Component Versioning
      • Kubernetes Manifest Versioning
      • GitLab
      • Creating a Fork
      • Naming Branches
      • Pull Requests
      • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
      • AWS to Azure
      • Azure to AWS
      • GCP to Azure
      • AWS to GCP
      • GCP to AWS
    • Azure
      • Best Practices
        • Azure Best Practices Overview
        • Azure Architecture Best Practices
        • Azure Naming Standards
        • Azure Tags
        • Azure Security Best Practices
      • Landing Zones
      • Services
        • Azure Active Directory (AAD)
        • Azure Monitor
        • Azure Key Vault
        • Azure Service Bus
        • Azure DNS
        • Azure App Service
        • Azure Batch
        • Azure Machine Learning
        • Azure OpenAI Service
        • Azure Cognitive Services
        • Azure Kubernetes Service (AKS)
        • Azure Databricks
        • Azure SQL Database
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
      • Services
        • AWS IAM (Identity and Access Management)
        • Amazon CloudWatch
        • Amazon SNS (Simple Notification Service)
        • Amazon SQS (Simple Queue Service)
        • Amazon Route 53
        • AWS Elastic Beanstalk
        • AWS Batch
        • Amazon SageMaker
        • Amazon Bedrock
        • Amazon Comprehend
    • Google Cloud
      • Services
        • Cloud CDN
        • Cloud DNS
        • Cloud Load Balancing
        • Google Kubernetes Engine (GKE)
        • Cloud Run
        • Artifact Registry
        • Compute Engine
        • Cloud Functions
        • App Engine
        • Cloud Storage
        • Persistent Disk
        • Filestore
        • Cloud SQL
        • Cloud Spanner
        • Firestore
        • Bigtable
        • BigQuery
        • VPC (Virtual Private Cloud)
  • 🔐Security & Compliance
    • DevSecOps Overview
      • DevSecOps Pipeline Security
      • DevSecOps
        • Real-life Examples
        • Scanning & Protection - Automated security tooling
          • Dependency Scanning
          • Credential Scanning
          • Container Security Scanning
          • Static Code Analysis
            • Best Practices
            • Tool Integration Guide
            • Pipeline Configuration
        • CI/CD Security
        • Secrets Rotation
      • Supply Chain Security
        • SLSA Framework
        • Binary Authorization
        • Artifact Signing
      • Security Best Practices
        • Threat Modeling
        • Kubernetes Security
      • SecOps
      • Zero Trust Model
      • Cloud Compliance
        • ISO/IEC 27001:2022
        • ISO 22301:2019
        • PCI DSS
        • CSA STAR
      • Security Frameworks
      • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
      • Logging
      • Metrics
      • Tracing
      • Dashboards
      • SLOs and SLAs
      • Observability as Code
      • Pipeline Observability
  • 🧪Testing Strategies
    • Testing Overview
      • Modern Testing Approaches
      • End-to-End Testing
      • Unit Testing
      • Performance Testing
        • Load Testing
      • Fault Injection Testing
      • Integration Testing
      • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
      • Claude
        • Installation Guide
        • Project Guides
        • MCP Server Setup
        • LLM Comparison
      • Ollama
        • Installation Guide
        • Configuration
        • Models and Fine-tuning
        • DevOps Usage
        • Docker Setup
        • GPU Setup
        • Open WebUI
      • Copilot
        • Installation Guide
        • VS Code Integration
        • CLI Usage
      • Gemini
        • Installation Guides - Platform-specific setup
          • Linux Installation
          • WSL Installation
          • NixOS Installation
        • Gemini 2.5 Features
        • Roles and Agents
        • NotebookML Guide
        • Cloud Infrastructure Deployment
        • Summary
  • 💻Development Environment
    • DevOps Tools
      • Operating Systems - Development platforms
        • NixOS
          • Install NixOS: PC, Mac, WSL
          • Nix Language Deep Dive
          • Nix Language Fundamentals
            • Nix Functions and Techniques
            • Building Packages with Nix
            • NixOS Configuration Patterns
            • Flakes: The Future of Nix
          • NixOS Generators: Azure & QEMU
        • WSL2
          • Distributions
          • Terminal Setup
      • Editor Environments
      • CLI Tools
        • Azure CLI
        • PowerShell
        • Linux Commands
          • SSH - Secure Shell)
            • SSH Config
            • SSH Port Forwarding
        • Linux Fundametals
        • Cloud init
          • Cloud init examples
        • YAML Tools
          • How to create a k8s yaml file - How to create YAML config
          • YQ the tool
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Should Learn
    • Should Learn
    • Linux
      • Commands
      • OS
      • Services
    • Terraform
    • Getting Started - Installation and initial setup [BEGINNER]
    • Cloud Integrations
    • Testing and Validation - Ensuring infrastructure quality
      • Unit Testing
      • Integration Testing
      • End-to-End Testing
      • Terratest Guide
    • Best Practices - Production-ready implementation strategies
      • State Management
      • Security
      • Code Organization
      • Performance
    • Tools & Utilities
    • CI/CD Integration
    • Bicep
    • Kubernetes
      • kubectl
    • Ansible
    • Puppet
    • Java
    • Rust
    • Azure CLI
  • 📖Documentation Best Practices
    • Documentation Strategy
      • Project Documentation
      • Release Notes
      • Static Sites
      • Documentation Templates
      • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Tool Decision Guides
    • Recommended Reading
    • Troubleshooting Guide
    • Development Setup
Powered by GitBook
On this page
  • Real-Life Health Management Strategies
  • Advanced Monitoring Setup
  • Proactive Health Maintenance
  • Cluster Recovery Procedures
  • Advanced Autoscaling
  • Best Practices
  • Cross-Cloud Health Management
  • References
Edit on GitHub
  1. Containers & Orchestration
  2. Containerization Overview
  3. Kubernetes

Health Management

Enterprise Kubernetes deployments require robust health management strategies to ensure reliability, performance, and availability. This guide covers advanced techniques for maintaining healthy Kubernetes clusters at scale.


Real-Life Health Management Strategies

  • Multi-cluster Health Dashboards: Implement centralized observability platforms (Grafana/Prometheus) that aggregate health metrics across all clusters in your fleet.

  • Capacity Forecasting: Use historical resource consumption data to predict future capacity needs and automate scaling operations before constraints impact performance.

  • Kubernetes Control Plane Monitoring: Implement dedicated monitoring for API server, etcd, scheduler, and controller-manager components with automated alerting.

  • Failure Domain Isolation: Design clusters to withstand the failure of entire regions, availability zones, or control plane components.


Advanced Monitoring Setup

  1. Comprehensive Metric Collection:

    apiVersion: monitoring.coreos.com/v1
    kind: PodMonitor
    metadata:
      name: app-metrics
      namespace: monitoring
    spec:
      selector:
        matchLabels:
          app.kubernetes.io/component: backend
      podMetricsEndpoints:
      - port: metrics
        interval: 15s
        scrapeTimeout: 10s
      namespaceSelector:
        matchNames:
        - production
        - staging
  2. Control Plane Health Checks:

    # Monitor etcd health
    kubectl -n kube-system exec etcd-master -- etcdctl --endpoints=https://127.0.0.1:2379 \
      --cacert=/etc/kubernetes/pki/etcd/ca.crt \
      --cert=/etc/kubernetes/pki/etcd/server.crt \
      --key=/etc/kubernetes/pki/etcd/server.key \
      endpoint health
    
    # Check API server health
    kubectl get --raw='/healthz'
    
    # Check all component statuses
    kubectl get componentstatuses
  3. Extended Node Problem Detection:

    apiVersion: apps/v1
    kind: DaemonSet
    metadata:
      name: node-problem-detector
      namespace: kube-system
    spec:
      selector:
        matchLabels:
          app: node-problem-detector
      template:
        metadata:
          labels:
            app: node-problem-detector
        spec:
          containers:
          - name: node-problem-detector
            image: k8s.gcr.io/node-problem-detector:v0.8.7
            securityContext:
              privileged: true
            volumeMounts:
            - name: log
              mountPath: /var/log
              readOnly: true
          volumes:
          - name: log
            hostPath:
              path: /var/log

Proactive Health Maintenance

  • Regular etcd Defragmentation:

    # Run etcd defragmentation to reclaim space
    kubectl -n kube-system exec etcd-master -- etcdctl --endpoints=https://127.0.0.1:2379 \
      --cacert=/etc/kubernetes/pki/etcd/ca.crt \
      --cert=/etc/kubernetes/pki/etcd/server.crt \
      --key=/etc/kubernetes/pki/etcd/server.key \
      defrag
  • Automated Certificate Rotation:

    # Check certificate expiration
    kubeadm certs check-expiration
    
    # Rotate certificates
    kubeadm certs renew all
  • Cluster Upgrade Validation:

    # Pre-upgrade validation
    kubeadm upgrade plan
    
    # Apply upgrades in controlled manner
    kubeadm upgrade apply v1.27.x

Cluster Recovery Procedures

  1. API Server Recovery:

    # Check logs
    journalctl -u kubelet -f
    
    # Restart kubelet
    systemctl restart kubelet
    
    # Check API server pod
    kubectl -n kube-system get pod kube-apiserver-master -o yaml
  2. etcd Backup and Restore:

    # Create etcd snapshot
    ETCDCTL_API=3 etcdctl --endpoints=https://127.0.0.1:2379 \
      --cacert=/etc/kubernetes/pki/etcd/ca.crt \
      --cert=/etc/kubernetes/pki/etcd/server.crt \
      --key=/etc/kubernetes/pki/etcd/server.key \
      snapshot save /backup/etcd-snapshot-$(date +%Y-%m-%d).db
    
    # Restore from snapshot
    ETCDCTL_API=3 etcdctl --endpoints=https://127.0.0.1:2379 \
      --cacert=/etc/kubernetes/pki/etcd/ca.crt \
      --cert=/etc/kubernetes/pki/etcd/server.crt \
      --key=/etc/kubernetes/pki/etcd/server.key \
      snapshot restore /backup/etcd-snapshot.db
  3. Node Draining and Recovery:

    # Drain a node for maintenance
    kubectl drain node-1 --ignore-daemonsets --delete-emptydir-data
    
    # Mark node as unschedulable
    kubectl cordon node-1
    
    # Re-enable scheduling after maintenance
    kubectl uncordon node-1

Advanced Autoscaling

  1. Multi-dimensional Pod Autoscaling:

    apiVersion: autoscaling/v2
    kind: HorizontalPodAutoscaler
    metadata:
      name: advanced-hpa
      namespace: production
    spec:
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: web-app
      minReplicas: 3
      maxReplicas: 100
      metrics:
      - type: Resource
        resource:
          name: cpu
          target:
            type: Utilization
            averageUtilization: 70
      - type: Resource
        resource:
          name: memory
          target:
            type: Utilization
            averageUtilization: 80
      - type: External
        external:
          metric:
            name: queue_messages_ready
            selector:
              matchLabels:
                queue: "worker"
          target:
            type: AverageValue
            averageValue: 30
  2. Cluster Autoscaler with Node Affinity:

    apiVersion: cluster.k8s.io/v1
    kind: MachineDeployment
    metadata:
      name: gpu-workers
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          node-pool: gpu-accelerated
      template:
        spec:
          providerSpec:
            value:
              machineType: g4dn.xlarge
              diskSizeGb: 100
              labels:
                node-pool: gpu-accelerated

Best Practices

  • Implement Pod Disruption Budgets for all critical workloads to maintain availability during node maintenance.

  • Use multiple Prometheus instances with hierarchical federation for large clusters.

  • Employ dedicated infrastructure for monitoring stack to avoid monitoring failure during cluster issues.

  • Utilize Custom Resource Metrics for application-specific scaling decisions.

  • Implement regular cluster audits for security, resource allocation, and configuration drift.

  • Run chaos experiments to validate resilience and recovery procedures.


Cross-Cloud Health Management

  • Unified Monitoring Plane: Implement tools like Thanos or Cortex for cross-cluster, cross-cloud Prometheus federation.

  • Standard Health Metrics: Develop organization-wide standard health metrics and SLIs across all clusters.

  • Automated Recovery Playbooks: Create cloud-specific but standardized recovery procedures.

  • Cross-Cluster Service Discovery: Implement mechanisms for service discovery across multiple clusters.


References

PreviousEnterprise ArchitectureNextSecurity & Compliance

Last updated 8 days ago

🐳
Kubernetes SIG Instrumentation
Prometheus Operator
etcd Operations Guide
Kubernetes the Hard Way
SIG Cluster Lifecycle