Health Management

Enterprise Kubernetes deployments require robust health management strategies to ensure reliability, performance, and availability. This guide covers advanced techniques for maintaining healthy Kubernetes clusters at scale.


Real-Life Health Management Strategies

  • Multi-cluster Health Dashboards: Implement centralized observability platforms (Grafana/Prometheus) that aggregate health metrics across all clusters in your fleet.

  • Capacity Forecasting: Use historical resource consumption data to predict future capacity needs and automate scaling operations before constraints impact performance.

  • Kubernetes Control Plane Monitoring: Implement dedicated monitoring for API server, etcd, scheduler, and controller-manager components with automated alerting.

  • Failure Domain Isolation: Design clusters to withstand the failure of entire regions, availability zones, or control plane components.


Advanced Monitoring Setup

  1. Comprehensive Metric Collection:

    apiVersion: monitoring.coreos.com/v1
    kind: PodMonitor
    metadata:
      name: app-metrics
      namespace: monitoring
    spec:
      selector:
        matchLabels:
          app.kubernetes.io/component: backend
      podMetricsEndpoints:
      - port: metrics
        interval: 15s
        scrapeTimeout: 10s
      namespaceSelector:
        matchNames:
        - production
        - staging
  2. Control Plane Health Checks:

    # Monitor etcd health
    kubectl -n kube-system exec etcd-master -- etcdctl --endpoints=https://127.0.0.1:2379 \
      --cacert=/etc/kubernetes/pki/etcd/ca.crt \
      --cert=/etc/kubernetes/pki/etcd/server.crt \
      --key=/etc/kubernetes/pki/etcd/server.key \
      endpoint health
    
    # Check API server health
    kubectl get --raw='/healthz'
    
    # Check all component statuses
    kubectl get componentstatuses
  3. Extended Node Problem Detection:

    apiVersion: apps/v1
    kind: DaemonSet
    metadata:
      name: node-problem-detector
      namespace: kube-system
    spec:
      selector:
        matchLabels:
          app: node-problem-detector
      template:
        metadata:
          labels:
            app: node-problem-detector
        spec:
          containers:
          - name: node-problem-detector
            image: k8s.gcr.io/node-problem-detector:v0.8.7
            securityContext:
              privileged: true
            volumeMounts:
            - name: log
              mountPath: /var/log
              readOnly: true
          volumes:
          - name: log
            hostPath:
              path: /var/log

Proactive Health Maintenance

  • Regular etcd Defragmentation:

    # Run etcd defragmentation to reclaim space
    kubectl -n kube-system exec etcd-master -- etcdctl --endpoints=https://127.0.0.1:2379 \
      --cacert=/etc/kubernetes/pki/etcd/ca.crt \
      --cert=/etc/kubernetes/pki/etcd/server.crt \
      --key=/etc/kubernetes/pki/etcd/server.key \
      defrag
  • Automated Certificate Rotation:

    # Check certificate expiration
    kubeadm certs check-expiration
    
    # Rotate certificates
    kubeadm certs renew all
  • Cluster Upgrade Validation:

    # Pre-upgrade validation
    kubeadm upgrade plan
    
    # Apply upgrades in controlled manner
    kubeadm upgrade apply v1.27.x

Cluster Recovery Procedures

  1. API Server Recovery:

    # Check logs
    journalctl -u kubelet -f
    
    # Restart kubelet
    systemctl restart kubelet
    
    # Check API server pod
    kubectl -n kube-system get pod kube-apiserver-master -o yaml
  2. etcd Backup and Restore:

    # Create etcd snapshot
    ETCDCTL_API=3 etcdctl --endpoints=https://127.0.0.1:2379 \
      --cacert=/etc/kubernetes/pki/etcd/ca.crt \
      --cert=/etc/kubernetes/pki/etcd/server.crt \
      --key=/etc/kubernetes/pki/etcd/server.key \
      snapshot save /backup/etcd-snapshot-$(date +%Y-%m-%d).db
    
    # Restore from snapshot
    ETCDCTL_API=3 etcdctl --endpoints=https://127.0.0.1:2379 \
      --cacert=/etc/kubernetes/pki/etcd/ca.crt \
      --cert=/etc/kubernetes/pki/etcd/server.crt \
      --key=/etc/kubernetes/pki/etcd/server.key \
      snapshot restore /backup/etcd-snapshot.db
  3. Node Draining and Recovery:

    # Drain a node for maintenance
    kubectl drain node-1 --ignore-daemonsets --delete-emptydir-data
    
    # Mark node as unschedulable
    kubectl cordon node-1
    
    # Re-enable scheduling after maintenance
    kubectl uncordon node-1

Advanced Autoscaling

  1. Multi-dimensional Pod Autoscaling:

    apiVersion: autoscaling/v2
    kind: HorizontalPodAutoscaler
    metadata:
      name: advanced-hpa
      namespace: production
    spec:
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: web-app
      minReplicas: 3
      maxReplicas: 100
      metrics:
      - type: Resource
        resource:
          name: cpu
          target:
            type: Utilization
            averageUtilization: 70
      - type: Resource
        resource:
          name: memory
          target:
            type: Utilization
            averageUtilization: 80
      - type: External
        external:
          metric:
            name: queue_messages_ready
            selector:
              matchLabels:
                queue: "worker"
          target:
            type: AverageValue
            averageValue: 30
  2. Cluster Autoscaler with Node Affinity:

    apiVersion: cluster.k8s.io/v1
    kind: MachineDeployment
    metadata:
      name: gpu-workers
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          node-pool: gpu-accelerated
      template:
        spec:
          providerSpec:
            value:
              machineType: g4dn.xlarge
              diskSizeGb: 100
              labels:
                node-pool: gpu-accelerated

Best Practices

  • Implement Pod Disruption Budgets for all critical workloads to maintain availability during node maintenance.

  • Use multiple Prometheus instances with hierarchical federation for large clusters.

  • Employ dedicated infrastructure for monitoring stack to avoid monitoring failure during cluster issues.

  • Utilize Custom Resource Metrics for application-specific scaling decisions.

  • Implement regular cluster audits for security, resource allocation, and configuration drift.

  • Run chaos experiments to validate resilience and recovery procedures.


Cross-Cloud Health Management

  • Unified Monitoring Plane: Implement tools like Thanos or Cortex for cross-cluster, cross-cloud Prometheus federation.

  • Standard Health Metrics: Develop organization-wide standard health metrics and SLIs across all clusters.

  • Automated Recovery Playbooks: Create cloud-specific but standardized recovery procedures.

  • Cross-Cluster Service Discovery: Implement mechanisms for service discovery across multiple clusters.


References

Last updated