DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • Contribute
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • 🛠️DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
          • Azure Authetication
            • Service Principal
            • Service Principal in block
            • Service Principal in env
        • AWS Scenarios
          • AWS Authentication
        • GCP Scenarios
          • GCP Authentication
      • Testing and Validation
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions
        • Azure Pipelines
        • GitLab CI
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
      • Docker
        • Dockerfile Best Practices
        • Docker Compose
      • Kubernetes
        • CLI Tools - Essential command-line utilities
          • Kubectl
          • Kubens
          • Kubectx
        • Core Concepts
        • Components
        • Best Practices
          • Pod Security
          • Security Monitoring
          • Resource Limits
        • Advanced Features - Beyond the basics [ADVANCED]
          • Service Mesh
            • Istio
            • Linkerd
          • Ingress Controllers
            • NGINX
            • Traefik
            • Kong
            • Gloo Edge
            • Contour
        • Tips
          • Status in Pods
          • Resource handling
          • Pod Troubleshooting Commands
        • Enterprise Architecture
        • Health Management
        • Security & Compliance
        • Virtual Clusters
      • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
      • Serverless Edge
      • IoT Edge Patterns
      • Real-Time Processing
      • Edge AI/ML
      • Security Hardening
      • Observability Patterns
      • Network Optimization
      • Storage Patterns
  • 🚀CI/CD & Release Management
    • Continuous Integration
    • Continuous Delivery
      • Deployment Strategies
      • Secrets Management
      • Blue-Green Deployments
      • Deployment Metrics
      • Progressive Delivery
      • Release Management for DevOps/SRE (2025)
  • CI/CD Platforms
    • Tekton
      • Build and Push Container Images
      • Tekton on NixOS Setup
    • Flagger
    • Azure DevOps
      • Pipelines
        • Stages
        • Jobs
        • Steps
        • Templates - Reusable pipeline components
        • Extends
        • Service Connections - External service authentication
        • Best Practices for 2025
        • Agents and Runners
        • Third-Party Integrations
        • Azure DevOps CLI
      • Boards & Work Items
    • GitHub Actions
      • GitHub SecOps: DevSecOps Pipeline
    • GitLab
      • GitLab Runner
  • GitOps
    • GitOps Overview
      • Modern GitOps Practices
      • GitOps Patterns for Multi-Cloud (2025)
      • Flux
        • Progressive Delivery
        • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
      • Git Branching Strategies
      • Component Versioning
      • Kubernetes Manifest Versioning
      • GitLab
      • Creating a Fork
      • Naming Branches
      • Pull Requests
      • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
      • AWS to Azure
      • Azure to AWS
      • GCP to Azure
      • AWS to GCP
      • GCP to AWS
    • Landing Zones in Public Clouds
      • AWS Landing Zone
      • GCP Landing Zone
      • Azure Landing Zones
    • Azure
      • Best Practices
        • Azure Best Practices Overview
        • Azure Architecture Best Practices
        • Azure Naming Standards
        • Azure Tags
        • Azure Security Best Practices
      • Services
        • Azure Active Directory (AAD)
        • Azure Monitor
        • Azure Key Vault
        • Azure Service Bus
        • Azure DNS
        • Azure App Service
        • Azure Batch
        • Azure Machine Learning
        • Azure OpenAI Service
        • Azure Cognitive Services
        • Azure Kubernetes Service (AKS)
        • Azure Databricks
        • Azure SQL Database
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
      • Services
        • AWS IAM (Identity and Access Management)
        • Amazon CloudWatch
        • Amazon SNS (Simple Notification Service)
        • Amazon SQS (Simple Queue Service)
        • Amazon Route 53
        • AWS Elastic Beanstalk
        • AWS Batch
        • Amazon SageMaker
        • Amazon Bedrock
        • Amazon Comprehend
    • Google Cloud
      • Services
        • Cloud CDN
        • Cloud DNS
        • Cloud Load Balancing
        • Google Kubernetes Engine (GKE)
        • Cloud Run
        • Artifact Registry
        • Compute Engine
        • Cloud Functions
        • App Engine
        • Cloud Storage
        • Persistent Disk
        • Filestore
        • Cloud SQL
        • Cloud Spanner
        • Firestore
        • Bigtable
        • BigQuery
        • VPC (Virtual Private Cloud)
  • 🔐Security & Compliance
    • DevSecOps Overview
      • DevSecOps Pipeline Security
      • DevSecOps
        • Real-life Examples
        • Scanning & Protection - Automated security tooling
          • Dependency Scanning
          • Credential Scanning
          • Container Security Scanning
          • Static Code Analysis
            • Best Practices
            • Tool Integration Guide
            • Pipeline Configuration
        • CI/CD Security
        • Secrets Rotation
      • Supply Chain Security
        • SLSA Framework
        • Binary Authorization
        • Artifact Signing
      • Security Best Practices
        • Threat Modeling
        • Kubernetes Security
      • SecOps
      • Zero Trust Model
      • Cloud Compliance
        • ISO/IEC 27001:2022
        • ISO 22301:2019
        • PCI DSS
        • CSA STAR
      • Security Frameworks
      • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
  • 🧪Testing Strategies
    • Testing Overview
      • Modern Testing Approaches
      • End-to-End Testing
      • Unit Testing
      • Performance Testing
        • Load Testing
      • Fault Injection Testing
      • Integration Testing
      • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
      • Claude
        • Installation Guide
        • Project Guides
        • MCP Server Setup
        • LLM Comparison
      • Ollama
        • Installation Guide
        • Configuration
        • Models and Fine-tuning
        • DevOps Usage
        • Docker Setup
        • GPU Setup
        • Open WebUI
      • Copilot
        • Installation Guide
        • VS Code Integration
        • CLI Usage
      • Gemini
        • Installation Guides - Platform-specific setup
          • Linux Installation
          • WSL Installation
          • NixOS Installation
        • Gemini 2.5 Features
        • Roles and Agents
        • NotebookML Guide
        • Cloud Infrastructure Deployment
        • Summary
  • 💻Development Environment
    • DevOps Tools
      • Pulumi
      • Operating Systems - Development platforms
        • NixOS
          • Install NixOS: PC, Mac, WSL
          • Nix Language Deep Dive
          • Nix Language Fundamentals
            • Nix Functions and Techniques
            • Building Packages with Nix
            • NixOS Configuration Patterns
            • Flakes: The Future of Nix
          • NixOS Generators: Azure & QEMU
        • WSL2
          • Distributions
          • Terminal Setup
      • Editor Environments
      • CLI Tools
        • Azure CLI
        • PowerShell
        • Linux Commands
          • SSH - Secure Shell)
            • SSH Config
            • SSH Port Forwarding
        • Linux Fundametals
        • Cloud init
          • Cloud init examples
        • YAML Tools
          • How to create a k8s yaml file - How to create YAML config
          • YQ the tool
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Should Learn
    • Should Learn
    • Linux
      • Commands
      • OS
      • Services
    • Terraform
    • Getting Started - Installation and initial setup [BEGINNER]
    • Cloud Integrations
    • Testing and Validation - Ensuring infrastructure quality
      • Unit Testing
      • Integration Testing
      • End-to-End Testing
      • Terratest Guide
    • Best Practices - Production-ready implementation strategies
      • State Management
      • Security
      • Code Organization
      • Performance
    • Tools & Utilities
    • CI/CD Integration
    • Bicep
    • Kubernetes
      • kubectl
    • Ansible
    • Puppet
    • Java
    • Rust
    • Azure CLI
  • 📖Documentation Best Practices
    • Documentation Strategy
      • Project Documentation
      • Release Notes
      • Static Sites
      • Documentation Templates
      • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Tool Decision Guides
    • Recommended Reading
    • Troubleshooting Guide
    • Development Setup
Powered by GitBook
On this page
  • Overview
  • Key Features
  • Installation Guide
  • Linux Installation
  • WSL Installation
  • NixOS Installation
  • Real-Life Scenarios (2025 Best Practices)
  • Scenario 1: Multi-Environment CI/CD Pipeline for Microservices
  • Scenario 2: Secure Infrastructure as Code Deployment
  • Scenario 3: Auto-Scaling Cloud Runners for Cost Optimization
  • Scenario 4: Secure GitLab Runners for Sensitive Workloads
  • Best Practices for GitLab Runners (2025)
  • Security Best Practices
  • Performance Optimization
  • Cost Optimization
  • Resilience and Reliability
  • Monitoring GitLab Runners
  • Key Metrics to Monitor
  • Monitoring Tools Integration
  • Conclusion
  • Additional Resources
Edit on GitHub
  1. CI/CD Platforms
  2. GitLab

GitLab Runner

Overview

GitLab Runner is the agent that executes CI/CD jobs in the GitLab ecosystem. It runs the scripts defined in .gitlab-ci.yml files and reports the results back to GitLab. GitLab Runners can be installed on various platforms, from virtual machines and containers to Kubernetes clusters and serverless environments.

Key Features

  • Distributed execution: Run jobs on multiple machines simultaneously

  • Autoscaling: Dynamically provision runners based on workload

  • Multiple executor options: Shell, Docker, Kubernetes, Virtual Machine, SSH, and more

  • Job concurrency: Configure the number of concurrent jobs per runner

  • Custom environment variables: Pass environment-specific data to jobs

  • Artifact management: Handle job output files automatically

  • Caching support: Speed up builds by caching dependencies

Installation Guide

Linux Installation

Standard Linux Installation (Debian/Ubuntu)

# Add the GitLab repository
curl -L "https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.deb.sh" | sudo bash

# Install the latest version
sudo apt-get install gitlab-runner

# Register the runner with your GitLab instance
sudo gitlab-runner register

Follow the interactive registration process:

  1. Enter your GitLab instance URL

  2. Enter the registration token from your GitLab project/group settings

  3. Enter a description for the runner

  4. Add tags (optional but recommended for job targeting)

  5. Choose an executor (docker, shell, etc.)

RHEL/CentOS/Fedora Installation

# Add the GitLab repository
curl -L "https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.rpm.sh" | sudo bash

# Install the latest version
sudo dnf install gitlab-runner

# Register the runner
sudo gitlab-runner register

WSL Installation

Installing GitLab Runner in WSL combines the flexibility of Linux with integration into Windows environments:

# Update package lists
sudo apt update

# Install prerequisites
sudo apt install curl

# Download the GitLab Runner binary
sudo curl -L --output /usr/local/bin/gitlab-runner "https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64"

# Set execute permissions
sudo chmod +x /usr/local/bin/gitlab-runner

# Create a GitLab Runner user
sudo useradd --comment 'GitLab Runner' --create-home gitlab-runner --shell /bin/bash

# Install and run as a service
sudo gitlab-runner install --user=gitlab-runner --working-directory=/home/gitlab-runner
sudo gitlab-runner start

# Register the runner
sudo gitlab-runner register

WSL-Specific Considerations

  1. Ensure that Windows Defender or other security software doesn't block GitLab Runner

  2. Configure WSL to maintain a persistent connection if needed with task scheduler:

# Create a scheduled task to keep WSL running (execute in PowerShell as Admin)
$action = New-ScheduledTaskAction -Execute "wsl.exe" -Argument "-- sleep infinity"
$trigger = New-ScheduledTaskTrigger -AtStartup
$settings = New-ScheduledTaskSettingsSet -AllowStartIfOnBatteries -DontStopIfGoingOnBatteries -ExecutionTimeLimit 0
Register-ScheduledTask -TaskName "Keep WSL Running" -Action $action -Trigger $trigger -Settings $settings -User "SYSTEM" -RunLevel Highest

NixOS Installation

NixOS offers a declarative approach to system configuration, making GitLab Runner setup reproducible and version-controlled.

NixOS Configuration

Add the following to your configuration.nix file:

{ config, pkgs, ... }:

{
  # Enable GitLab Runner service
  services.gitlab-runner = {
    enable = true;
    
    # Configure runners
    # You can add multiple runners with different configurations
    settings = {
      concurrent = 4;  # Number of concurrent jobs
      check_interval = 0;
    };
    
    # Define a runner
    runners = [
      {
        name = "nixos-runner";
        # Environment variables available to the build
        environment = [ "PATH=/run/wrappers/bin:/nix/var/nix/profiles/default/bin" ];
        # GitLab instance URL - replace with your instance
        url = "https://gitlab.example.com";
        # Registration token from GitLab
        registrationConfigFile = "/var/lib/gitlab-runner/registration-token";
        # Runner executor
        executor = "shell";
        # Tags for job selection
        tagList = [ "nixos" "linux" ];
        # Run as unprivileged user
        runUntagged = true;
        # Whether to run untagged jobs
        protected = false;
      }
    ];
  };
  
  # Open necessary ports for GitLab communication
  networking.firewall.allowedTCPPorts = [ 9252 ];
  
  # Add the gitlab-runner user to docker group if using Docker executor
  users.users.gitlab-runner.extraGroups = [ "docker" ];
  virtualisation.docker.enable = true;  # If using Docker executor
}

Create the registration token file:

sudo mkdir -p /var/lib/gitlab-runner
echo "YOUR_RUNNER_REGISTRATION_TOKEN" | sudo tee /var/lib/gitlab-runner/registration-token
sudo chmod 600 /var/lib/gitlab-runner/registration-token

Apply the configuration:

sudo nixos-rebuild switch

Real-Life Scenarios (2025 Best Practices)

Scenario 1: Multi-Environment CI/CD Pipeline for Microservices

Challenge: A team manages a microservices architecture spanning development, staging, and production environments across multiple cloud providers.

Solution with GitLab Runner:

  1. Environment-Specific Runners:

# .gitlab-ci.yml
stages:
  - test
  - build
  - deploy-dev
  - deploy-staging
  - deploy-prod

variables:
  DOCKER_REGISTRY: "${CI_REGISTRY}"
  
test:
  stage: test
  image: node:18-alpine
  tags:
    - docker
  script:
    - npm ci
    - npm run test
  cache:
    paths:
      - node_modules/

build:
  stage: build
  image: docker:24.0
  tags:
    - docker
  services:
    - docker:24.0-dind
  script:
    - docker build -t ${DOCKER_REGISTRY}/${CI_PROJECT_PATH}:${CI_COMMIT_SHA} .
    - docker push ${DOCKER_REGISTRY}/${CI_PROJECT_PATH}:${CI_COMMIT_SHA}
  only:
    - main
    - tags

deploy-dev:
  stage: deploy-dev
  image: 
    name: bitnami/kubectl:1.28
    entrypoint: [""]
  tags:
    - kubernetes
    - dev
  script:
    - echo "${KUBE_CONFIG_DEV}" > kubeconfig
    - export KUBECONFIG=./kubeconfig
    - envsubst < kubernetes/dev.yaml | kubectl apply -f -
  environment:
    name: development
    url: https://dev.example.com
  only:
    - main

# Similar configurations for staging and production stages with different tags
  1. Runner Configuration:

# config.toml for dedicated environment runners
concurrent = 10
check_interval = 0

[[runners]]
  name = "dev-kubernetes-runner"
  url = "https://gitlab.example.com"
  token = "TOKEN"
  executor = "kubernetes"
  [runners.kubernetes]
    namespace = "gitlab-runners"
    image = "ubuntu:22.04"
    service_account = "gitlab-runner"
    service_account_overwrite_allowed = "gitlab-runner"
    pod_annotations_overwrite_allowed = "*"
    cpu_limit = "1"
    memory_limit = "1Gi"
    helper_cpu_limit = "200m"
    helper_memory_limit = "256Mi"
    poll_interval = 5
    resource_availability_check_interval = 1

[[runners]]
  name = "prod-kubernetes-runner"
  url = "https://gitlab.example.com"
  token = "TOKEN"
  executor = "kubernetes"
  tags = ["kubernetes", "production"]
  [runners.kubernetes]
    namespace = "gitlab-runners-prod"
    # Enhanced security for production
    privileged = false
    # Production runner with higher resource limits
    cpu_limit = "2"
    memory_limit = "4Gi"
    # Use node selector for production grade nodes
    node_selector = "env=production"
    service_account = "gitlab-runner-prod"

Scenario 2: Secure Infrastructure as Code Deployment

Challenge: Securely deploy infrastructure changes with appropriate approval gates and compliance checks.

Solution with GitLab Runner:

# .gitlab-ci.yml for Terraform deployment
stages:
  - validate
  - plan
  - apply
  - verify

variables:
  TF_ROOT: ${CI_PROJECT_DIR}/terraform
  TF_STATE_NAME: ${CI_PROJECT_PATH_SLUG}
  TF_CACHE_KEY: ${CI_COMMIT_REF_SLUG}
  TF_VAR_environment: ${CI_ENVIRONMENT_NAME}

# Include secure scanning templates
include:
  - template: Security/SAST.gitlab-ci.yml
  - template: Security/Secret-Detection.gitlab-ci.yml
  - template: Jobs/Infrastructure-as-Code-Security.gitlab-ci.yml

validate:
  stage: validate
  image: hashicorp/terraform:1.7
  tags:
    - docker
    - secure
  script:
    - cd ${TF_ROOT}
    - terraform init
    - terraform validate
    - terraform fmt -check
  cache:
    key: ${TF_CACHE_KEY}
    paths:
      - ${TF_ROOT}/.terraform

terraform-plan:
  stage: plan
  image: hashicorp/terraform:1.7
  tags:
    - docker
    - secure
  script:
    - cd ${TF_ROOT}
    - terraform init
    - terraform plan -out=tfplan
  artifacts:
    paths:
      - ${TF_ROOT}/tfplan
    expire_in: 1 week
  cache:
    key: ${TF_CACHE_KEY}
    paths:
      - ${TF_ROOT}/.terraform
  rules:
    - if: $CI_COMMIT_BRANCH == "main"

# The apply job requires approval before execution (2025 best practice)
terraform-apply:
  stage: apply
  image: hashicorp/terraform:1.7
  tags:
    - docker
    - secure
  script:
    - cd ${TF_ROOT}
    - terraform init
    - terraform apply -auto-approve tfplan
  dependencies:
    - terraform-plan
  when: manual
  environment:
    name: production
    url: https://console.example.cloud/projects/${TF_VAR_project_id}
  rules:
    - if: $CI_COMMIT_BRANCH == "main"
  cache:
    key: ${TF_CACHE_KEY}
    paths:
      - ${TF_ROOT}/.terraform

# Verify infrastructure after deployment
verify-infrastructure:
  stage: verify
  image: python:3.12-alpine
  tags:
    - docker
  script:
    - pip install pytest boto3 azure-identity azure-mgmt-resource google-cloud-resource-manager
    - cd ${CI_PROJECT_DIR}/tests
    - python -m pytest -xvs infra_tests.py
  dependencies:
    - terraform-apply
  rules:
    - if: $CI_COMMIT_BRANCH == "main"
      when: on_success

Scenario 3: Auto-Scaling Cloud Runners for Cost Optimization

Challenge: Managing pipeline costs while ensuring sufficient capacity for peak times.

Solution with GitLab Runner on AWS/Azure/GCP:

AWS Auto-Scaling Configuration (Terraform)

# AWS auto-scaling GitLab Runners with Terraform

resource "aws_launch_template" "gitlab_runner" {
  name_prefix   = "gitlab-runner-"
  image_id      = "ami-0123456789abcdef0" # Amazon Linux 2 AMI
  instance_type = "c6a.large"  # AMD-based instances for better cost/performance
  
  user_data = base64encode(<<-EOF
    #!/bin/bash
    yum update -y
    amazon-linux-extras install docker -y
    systemctl enable docker
    systemctl start docker
    
    # Install GitLab Runner
    curl -L "https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.rpm.sh" | bash
    yum install -y gitlab-runner
    
    # Register the runner with auto-scaling configuration
    gitlab-runner register \
      --non-interactive \
      --url "https://gitlab.example.com/" \
      --registration-token "${var.runner_token}" \
      --executor "docker+machine" \
      --docker-image "alpine:latest" \
      --description "Auto-scaling Runner" \
      --tag-list "aws,auto-scale" \
      --run-untagged="true" \
      --locked="false" \
      --access-level="not_protected" \
      --docker-privileged \
      --docker-volumes "/var/run/docker.sock:/var/run/docker.sock" \
      --machine-idle-nodes 1 \
      --machine-idle-time 1800 \
      --machine-max-builds 100 \
      --machine-machine-driver "amazonec2" \
      --machine-machine-name "gitlab-docker-machine-%s" \
      --machine-machine-options "amazonec2-instance-type=c6a.large" \
      --machine-machine-options "amazonec2-region=${var.aws_region}" \
      --machine-machine-options "amazonec2-vpc-id=${var.vpc_id}" \
      --machine-machine-options "amazonec2-subnet-id=${var.subnet_id}" \
      --machine-machine-options "amazonec2-use-private-address=true" \
      --machine-machine-options "amazonec2-security-group=${var.security_group}" \
      --machine-machine-options "amazonec2-tags=runner,gitlab,${var.environment}"
  EOF
  )
  
  iam_instance_profile {
    name = aws_iam_instance_profile.gitlab_runner.name
  }
  
  network_interfaces {
    associate_public_ip_address = true
    security_groups             = [var.security_group_id]
  }
  
  tag_specifications {
    resource_type = "instance"
    tags = {
      Name = "GitLab Runner"
      Environment = var.environment
      ManagedBy = "Terraform"
    }
  }
}

resource "aws_autoscaling_group" "gitlab_runner" {
  desired_capacity    = 1
  max_size            = 5
  min_size            = 1
  vpc_zone_identifier = var.subnet_ids
  
  launch_template {
    id      = aws_launch_template.gitlab_runner.id
    version = "$Latest"
  }
  
  tag {
    key                 = "Name"
    value               = "GitLab Runner"
    propagate_at_launch = true
  }
  
  # Scale based on average CPU utilization
  target_tracking_configuration {
    predefined_metric_specification {
      predefined_metric_type = "ASGAverageCPUUtilization"
    }
    target_value = 60.0
  }
}

Scenario 4: Secure GitLab Runners for Sensitive Workloads

Challenge: Running CI/CD pipelines for high-security environments with strict compliance requirements.

Solution:

  1. Configure isolated, dedicated runners with enhanced security settings:

# config.toml for secure runners
concurrent = 4
check_interval = 0

[[runners]]
  name = "secure-compliant-runner"
  url = "https://gitlab.example.com"
  token = "TOKEN"
  executor = "docker"
  [runners.docker]
    tls_verify = true
    image = "alpine:3.19"
    privileged = false
    disable_entrypoint_overwrite = true
    oom_kill_disable = false
    disable_cache = true
    volumes = ["/cache"]
    shm_size = 0
    network_mode = "bridge"
  [runners.cache]
    Type = "s3"
    Shared = false
    [runners.cache.s3]
      ServerAddress = "s3.amazonaws.com"
      AccessKey = "${S3_ACCESS_KEY}"
      SecretKey = "${S3_SECRET_KEY}"
      BucketName = "gitlab-runner-cache"
      BucketLocation = "us-east-1"
      Insecure = false
      Encrypted = true
  1. Pipeline configuration for sensitive workloads:

# .gitlab-ci.yml for sensitive workloads
stages:
  - security-scan
  - test
  - build
  - deploy

# Include security scanning templates
include:
  - template: Security/SAST.gitlab-ci.yml
  - template: Security/Secret-Detection.gitlab-ci.yml
  - template: Security/Dependency-Scanning.gitlab-ci.yml
  - template: Security/Container-Scanning.gitlab-ci.yml
  - template: Security/License-Scanning.gitlab-ci.yml

variables:
  # Enhance security features
  SECURE_ANALYZERS_PREFIX: "registry.gitlab.com/security-products"
  SCAN_KUBERNETES_MANIFESTS: "true"

# Interactive Application Security Testing
dast:
  stage: security-scan
  tags:
    - secure
    - compliant
  image:
    name: "${SECURE_ANALYZERS_PREFIX}/dast:latest"
  variables:
    DAST_WEBSITE: https://staging.example.com
    DAST_FULL_SCAN_ENABLED: "true"
    DAST_ZAP_USE_AJAX_SPIDER: "true"
    DAST_REQUEST_HEADERS: "Cache-Control: no-cache,User-Agent: DAST/1.0"
    # Add authentication if needed
    # DAST_AUTH_URL: https://staging.example.com/login
    # DAST_USERNAME: ${SECURITY_USERNAME}
    # DAST_PASSWORD: ${SECURITY_PASSWORD}
  allow_failure: false
  artifacts:
    reports:
      dast: gl-dast-report.json

# Secure build process
build:
  stage: build
  tags:
    - secure
    - compliant
  image: docker:24.0
  services:
    - name: docker:24.0-dind
      command: ["--tls=true", "--tlscert=/certs/server.pem", "--tlskey=/certs/server-key.pem"]
  script:
    # Sign the build for supply chain security
    - apk add --no-cache cosign
    - docker build -t ${CI_REGISTRY_IMAGE}:${CI_COMMIT_SHA} .
    - echo "${CI_REGISTRY_PASSWORD}" | docker login -u ${CI_REGISTRY_USER} --password-stdin ${CI_REGISTRY}
    - docker push ${CI_REGISTRY_IMAGE}:${CI_COMMIT_SHA}
    - cosign sign --key ${COSIGN_KEY} ${CI_REGISTRY_IMAGE}:${CI_COMMIT_SHA}
  artifacts:
    reports:
      container_scanning: gl-container-scanning-report.json

# Deploy using zero-trust principles
deploy:
  stage: deploy
  tags:
    - secure
    - compliant
  image: 
    name: bitnami/kubectl:1.28
    entrypoint: [""]
  variables:
    VERIFY_TLS: "true"
  script:
    # Use short-lived credentials
    - export TOKEN=$(curl -H "X-Vault-Token: $VAULT_TOKEN" -X POST $VAULT_ADDR/v1/auth/kubernetes/login -d '{"role":"gitlab-deploy","jwt":"'$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)'"}' | jq -r '.auth.client_token')
    # Get environment-specific configs from vault
    - export KUBECONFIG=$(curl -H "X-Vault-Token: $TOKEN" -X GET $VAULT_ADDR/v1/secret/data/kubernetes/config | jq -r '.data.data.kubeconfig' > kubeconfig && echo ./kubeconfig)
    # Verify image signature before deployment
    - cosign verify --key ${COSIGN_PUBLIC_KEY} ${CI_REGISTRY_IMAGE}:${CI_COMMIT_SHA}
    # Deploy with strict security context
    - envsubst < kubernetes/deploy-secure.yaml | kubectl apply -f -
  environment:
    name: production
    url: https://example.com
  when: manual

Best Practices for GitLab Runners (2025)

Security Best Practices

  1. Zero Trust Architecture:

    • Implement Workload Identity Federation instead of static tokens

    • Use short-lived credentials for cloud resource access

    • Verify all artifacts with digital signatures

  2. Runner Isolation:

    • Use dedicated runners for sensitive projects

    • Implement network segmentation for runner environments

    • Utilize container sandboxing technologies (gVisor, Kata Containers)

  3. Supply Chain Security:

    • Sign all container images with Cosign or Notary

    • Implement Software Bill of Materials (SBOM) generation

    • Use trusted base images with vulnerability scanning

Performance Optimization

  1. Smart Caching Strategies:

    • Use distributed caching systems (S3, GCS, Azure Blob)

    • Implement layer caching for Docker builds

    • Cache package manager dependencies effectively

  2. Resource Allocation:

    • Set appropriate resource limits based on job requirements

    • Utilize spot/preemptible instances for cost-efficiency

    • Implement auto-scaling based on workload patterns

  3. Containerized Execution:

    • Use slim, purpose-built containers for jobs

    • Implement multi-stage builds to reduce image size

    • Optimize dependency management for faster execution

Cost Optimization

  1. Intelligent Scaling:

    • Implement predictive auto-scaling based on historical patterns

    • Use spot instances with fallback mechanisms

    • Scale to zero for non-critical environments

  2. Resource Efficiency:

    • Tag runners for specific workloads to optimize resource use

    • Set job timeouts to prevent runaway processes

    • Implement job concurrency limits

  3. Multi-Cloud Strategy:

    • Distribute runners across cloud providers for cost arbitrage

    • Use runners in regions with lower costs

    • Implement FinOps practices with cost monitoring

Resilience and Reliability

  1. High Availability Setup:

    • Deploy runners across multiple availability zones

    • Implement circuit breakers for external dependencies

    • Use health checks and automatic remediation

  2. Failure Management:

    • Implement retry mechanisms for transient failures

    • Set up alerting for repeated job failures

    • Create runbooks for common runner issues

  3. Disaster Recovery:

    • Backup runner configurations regularly

    • Test recovery scenarios periodically

    • Document recovery procedures

Monitoring GitLab Runners

Key Metrics to Monitor

  1. System Resources:

    • CPU, memory, and disk usage

    • Network throughput and latency

    • Queue length and job wait time

  2. Job Performance:

    • Job execution time

    • Build success/failure rate

    • Cache hit/miss ratio

  3. Cost Metrics:

    • Runner uptime

    • Resource utilization efficiency

    • Job cost by project/branch

Monitoring Tools Integration

# prometheus.yml configuration
scrape_configs:
  - job_name: 'gitlab_runners'
    scrape_interval: 15s
    static_configs:
      - targets: ['gitlab-runner:9252']

Example Grafana dashboard query:

rate(gitlab_runner_jobs_total{status="success"}[5m])

Conclusion

GitLab Runner remains a critical component of modern CI/CD infrastructure in 2025. By following best practices for installation, configuration, security, and scaling, organizations can build resilient and efficient pipelines that support modern software delivery practices. The platform-specific installation guides and real-world scenarios provided here should help teams implement GitLab Runner effectively across different environments.

Additional Resources

PreviousGitLabNextGitOps Overview

Last updated 12 hours ago

Official GitLab Runner Documentation
GitLab Runner Security
Kubernetes Executor
Auto-scaling with Docker Machine