DevOps help for Cloud Platform Engineers
  • Welcome!
  • Quick Start Guide
  • About Me
  • CV
  • Contribute
  • 🧠DevOps & SRE Foundations
    • DevOps Overview
      • Engineering Fundamentals
      • Implementing DevOps Strategy
      • DevOps Readiness Assessment
      • Lifecycle Management
      • The 12 Factor App
      • Design for Self Healing
      • Incident Management Best Practices (2025)
    • SRE Fundamentals
      • Toil Reduction
      • System Simplicity
      • Real-world Scenarios
        • AWS VM Log Monitoring API
    • Agile Development
      • Team Agreements
        • Definition of Done
        • Definition of Ready
        • Team Manifesto
        • Working Agreement
    • Industry Scenarios
      • Finance and Banking
      • Public Sector (UK/EU)
      • Energy Sector Edge Computing
  • DevOps Practices
    • Platform Engineering
    • FinOps
    • Observability
      • Modern Practices
  • 🚀Modern DevOps Practices
    • Infrastructure Testing
    • Modern Development
    • Database DevOps
  • 🛠️Infrastructure as Code (IaC)
    • Terraform
      • Cloud Integrations - Provider-specific implementations
        • Azure Scenarios
          • Azure Authetication
            • Service Principal
            • Service Principal in block
            • Service Principal in env
        • AWS Scenarios
          • AWS Authentication
        • GCP Scenarios
          • GCP Authentication
      • Testing and Validation
        • Unit Testing
        • Integration Testing
        • End-to-End Testing
        • Terratest Guide
      • Best Practices
        • State Management
        • Security
        • Code Organization
        • Performance
      • Tools & Utilities - Enhancing the Terraform workflow
        • Terraform Docs
        • TFLint
        • Checkov
        • Terrascan
      • CI/CD Integration - Automating infrastructure deployment
        • GitHub Actions
        • Azure Pipelines
        • GitLab CI
    • Bicep
      • Getting Started - First steps with Bicep [BEGINNER]
      • Template Specs
      • Best Practices - Guidelines for effective Bicep implementations
      • Modules - Building reusable components [INTERMEDIATE]
      • Examples - Sample implementations for common scenarios
      • Advanced Features
      • CI/CD Integration - Automating Bicep deployments
        • GitHub Actions
        • Azure Pipelines
  • 💰Cost Management & FinOps
    • Cloud Cost Optimization
  • 🐳Containers & Orchestration
    • Containerization Overview
      • Docker
        • Dockerfile Best Practices
        • Docker Compose
      • Kubernetes
        • CLI Tools - Essential command-line utilities
          • Kubectl
          • Kubens
          • Kubectx
        • Core Concepts
        • Components
        • Best Practices
          • Pod Security
          • Security Monitoring
          • Resource Limits
        • Advanced Features - Beyond the basics [ADVANCED]
          • Service Mesh
            • Istio
            • Linkerd
          • Ingress Controllers
            • NGINX
            • Traefik
            • Kong
            • Gloo Edge
            • Contour
        • Tips
          • Status in Pods
          • Resource handling
          • Pod Troubleshooting Commands
        • Enterprise Architecture
        • Health Management
        • Security & Compliance
        • Virtual Clusters
      • OpenShift
  • Service Mesh & Networking
    • Service Mesh Implementation
  • Architecture Patterns
    • Data Mesh
    • Multi-Cloud Networking
    • Disaster Recovery
    • Chaos Engineering
  • Edge Computing
    • Implementation Guide
      • Serverless Edge
      • IoT Edge Patterns
      • Real-Time Processing
      • Edge AI/ML
      • Security Hardening
      • Observability Patterns
      • Network Optimization
      • Storage Patterns
  • 🔄CI/CD & GitOps
    • CI/CD Overview
      • Continuous Integration
      • Continuous Delivery
        • Deployment Strategies
        • Secrets Management
        • Blue-Green Deployments
        • Deployment Metrics
        • Progressive Delivery
        • Release Management for DevOps/SRE (2025)
      • CI/CD Platforms - Tool selection and implementation
        • Azure DevOps
          • Pipelines
            • Stages
            • Jobs
            • Steps
            • Templates - Reusable pipeline components
            • Extends
            • Service Connections - External service authentication
            • Best Practices for 2025
            • Agents and Runners
            • Third-Party Integrations
            • Azure DevOps CLI
          • Boards & Work Items
        • GitHub Actions
        • GitLab
          • GitLab Runner
          • Real-life scenarios
          • Installation guides
          • Pros and Cons
          • Comparison with alternatives
      • GitOps
        • Modern GitOps Practices
        • GitOps Patterns for Multi-Cloud (2025)
        • Flux
          • Overview
          • Progressive Delivery
          • Use GitOps with Flux, GitHub and AKS
  • Source Control
    • Source Control Overview
      • Git Branching Strategies
      • Component Versioning
      • Kubernetes Manifest Versioning
      • GitLab
      • Creating a Fork
      • Naming Branches
      • Pull Requests
      • Integrating LLMs into Source Control Workflows
  • ☁️Cloud Platforms
    • Cloud Strategy
      • AWS to Azure
      • Azure to AWS
      • GCP to Azure
      • AWS to GCP
      • GCP to AWS
    • Azure
      • Best Practices
        • Azure Best Practices Overview
        • Azure Architecture Best Practices
        • Azure Naming Standards
        • Azure Tags
        • Azure Security Best Practices
      • Landing Zones
      • Services
        • Azure Active Directory (AAD)
        • Azure Monitor
        • Azure Key Vault
        • Azure Service Bus
        • Azure DNS
        • Azure App Service
        • Azure Batch
        • Azure Machine Learning
        • Azure OpenAI Service
        • Azure Cognitive Services
        • Azure Kubernetes Service (AKS)
        • Azure Databricks
        • Azure SQL Database
      • Monitoring
      • Administration Tools - Platform management interfaces
        • Azure PowerShell
        • Azure CLI
      • Tips & Tricks
    • AWS
      • Authentication
      • Best Practices
      • Tips & Tricks
      • Services
        • AWS IAM (Identity and Access Management)
        • Amazon CloudWatch
        • Amazon SNS (Simple Notification Service)
        • Amazon SQS (Simple Queue Service)
        • Amazon Route 53
        • AWS Elastic Beanstalk
        • AWS Batch
        • Amazon SageMaker
        • Amazon Bedrock
        • Amazon Comprehend
    • Google Cloud
      • Services
        • Cloud CDN
        • Cloud DNS
        • Cloud Load Balancing
        • Google Kubernetes Engine (GKE)
        • Cloud Run
        • Artifact Registry
        • Compute Engine
        • Cloud Functions
        • App Engine
        • Cloud Storage
        • Persistent Disk
        • Filestore
        • Cloud SQL
        • Cloud Spanner
        • Firestore
        • Bigtable
        • BigQuery
        • VPC (Virtual Private Cloud)
  • 🔐Security & Compliance
    • DevSecOps Overview
      • DevSecOps Pipeline Security
      • DevSecOps
        • Real-life Examples
        • Scanning & Protection - Automated security tooling
          • Dependency Scanning
          • Credential Scanning
          • Container Security Scanning
          • Static Code Analysis
            • Best Practices
            • Tool Integration Guide
            • Pipeline Configuration
        • CI/CD Security
        • Secrets Rotation
      • Supply Chain Security
        • SLSA Framework
        • Binary Authorization
        • Artifact Signing
      • Security Best Practices
        • Threat Modeling
        • Kubernetes Security
      • SecOps
      • Zero Trust Model
      • Cloud Compliance
        • ISO/IEC 27001:2022
        • ISO 22301:2019
        • PCI DSS
        • CSA STAR
      • Security Frameworks
      • SIEM and SOAR
  • Security Architecture
    • Zero Trust Implementation
      • Identity Management
      • Network Security
      • Access Control
  • 🔍Observability & Monitoring
    • Observability Fundamentals
      • Logging
      • Metrics
      • Tracing
      • Dashboards
      • SLOs and SLAs
      • Observability as Code
      • Pipeline Observability
  • 🧪Testing Strategies
    • Testing Overview
      • Modern Testing Approaches
      • End-to-End Testing
      • Unit Testing
      • Performance Testing
        • Load Testing
      • Fault Injection Testing
      • Integration Testing
      • Smoke Testing
  • 🤖AI Integration
    • AIops Overview
      • Workflow Automation
      • Predictive Analytics
      • Code Quality
  • 🧠AI & LLM Integration
    • Overview
      • Claude
        • Installation Guide
        • Project Guides
        • MCP Server Setup
        • LLM Comparison
      • Ollama
        • Installation Guide
        • Configuration
        • Models and Fine-tuning
        • DevOps Usage
        • Docker Setup
        • GPU Setup
        • Open WebUI
      • Copilot
        • Installation Guide
        • VS Code Integration
        • CLI Usage
      • Gemini
        • Installation Guides - Platform-specific setup
          • Linux Installation
          • WSL Installation
          • NixOS Installation
        • Gemini 2.5 Features
        • Roles and Agents
        • NotebookML Guide
        • Cloud Infrastructure Deployment
        • Summary
  • 💻Development Environment
    • DevOps Tools
      • Operating Systems - Development platforms
        • NixOS
          • Install NixOS: PC, Mac, WSL
          • Nix Language Deep Dive
          • Nix Language Fundamentals
            • Nix Functions and Techniques
            • Building Packages with Nix
            • NixOS Configuration Patterns
            • Flakes: The Future of Nix
          • NixOS Generators: Azure & QEMU
        • WSL2
          • Distributions
          • Terminal Setup
      • Editor Environments
      • CLI Tools
        • Azure CLI
        • PowerShell
        • Linux Commands
          • SSH - Secure Shell)
            • SSH Config
            • SSH Port Forwarding
        • Linux Fundametals
        • Cloud init
          • Cloud init examples
        • YAML Tools
          • How to create a k8s yaml file - How to create YAML config
          • YQ the tool
  • 📚Programming Languages
    • Python
    • Go
    • JavaScript/TypeScript
    • Java
    • Rust
  • Platform Engineering
    • Implementation Guide
  • FinOps
    • Implementation Guide
  • AIOps
    • LLMOps Guide
  • Should Learn
    • Should Learn
    • Linux
      • Commands
      • OS
      • Services
    • Terraform
    • Getting Started - Installation and initial setup [BEGINNER]
    • Cloud Integrations
    • Testing and Validation - Ensuring infrastructure quality
      • Unit Testing
      • Integration Testing
      • End-to-End Testing
      • Terratest Guide
    • Best Practices - Production-ready implementation strategies
      • State Management
      • Security
      • Code Organization
      • Performance
    • Tools & Utilities
    • CI/CD Integration
    • Bicep
    • Kubernetes
      • kubectl
    • Ansible
    • Puppet
    • Java
    • Rust
    • Azure CLI
  • 📖Documentation Best Practices
    • Documentation Strategy
      • Project Documentation
      • Release Notes
      • Static Sites
      • Documentation Templates
      • Real-World Examples
  • 📋Reference Materials
    • Glossary
    • Tool Comparison
    • Tool Decision Guides
    • Recommended Reading
    • Troubleshooting Guide
    • Development Setup
Powered by GitBook
On this page
  • Overview
  • Key Features
  • Installation Guide
  • Linux Installation
  • WSL Installation
  • NixOS Installation
  • Real-Life Scenarios (2025 Best Practices)
  • Scenario 1: Multi-Environment CI/CD Pipeline for Microservices
  • Scenario 2: Secure Infrastructure as Code Deployment
  • Scenario 3: Auto-Scaling Cloud Runners for Cost Optimization
  • Scenario 4: Secure GitLab Runners for Sensitive Workloads
  • Best Practices for GitLab Runners (2025)
  • Security Best Practices
  • Performance Optimization
  • Cost Optimization
  • Resilience and Reliability
  • Monitoring GitLab Runners
  • Key Metrics to Monitor
  • Monitoring Tools Integration
  • Conclusion
  • Additional Resources
Edit on GitHub
  1. CI/CD & GitOps
  2. CI/CD Overview
  3. CI/CD Platforms - Tool selection and implementation
  4. GitLab

GitLab Runner

Overview

GitLab Runner is the agent that executes CI/CD jobs in the GitLab ecosystem. It runs the scripts defined in .gitlab-ci.yml files and reports the results back to GitLab. GitLab Runners can be installed on various platforms, from virtual machines and containers to Kubernetes clusters and serverless environments.

Key Features

  • Distributed execution: Run jobs on multiple machines simultaneously

  • Autoscaling: Dynamically provision runners based on workload

  • Multiple executor options: Shell, Docker, Kubernetes, Virtual Machine, SSH, and more

  • Job concurrency: Configure the number of concurrent jobs per runner

  • Custom environment variables: Pass environment-specific data to jobs

  • Artifact management: Handle job output files automatically

  • Caching support: Speed up builds by caching dependencies

Installation Guide

Linux Installation

Standard Linux Installation (Debian/Ubuntu)

# Add the GitLab repository
curl -L "https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.deb.sh" | sudo bash

# Install the latest version
sudo apt-get install gitlab-runner

# Register the runner with your GitLab instance
sudo gitlab-runner register

Follow the interactive registration process:

  1. Enter your GitLab instance URL

  2. Enter the registration token from your GitLab project/group settings

  3. Enter a description for the runner

  4. Add tags (optional but recommended for job targeting)

  5. Choose an executor (docker, shell, etc.)

RHEL/CentOS/Fedora Installation

# Add the GitLab repository
curl -L "https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.rpm.sh" | sudo bash

# Install the latest version
sudo dnf install gitlab-runner

# Register the runner
sudo gitlab-runner register

WSL Installation

Installing GitLab Runner in WSL combines the flexibility of Linux with integration into Windows environments:

# Update package lists
sudo apt update

# Install prerequisites
sudo apt install curl

# Download the GitLab Runner binary
sudo curl -L --output /usr/local/bin/gitlab-runner "https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64"

# Set execute permissions
sudo chmod +x /usr/local/bin/gitlab-runner

# Create a GitLab Runner user
sudo useradd --comment 'GitLab Runner' --create-home gitlab-runner --shell /bin/bash

# Install and run as a service
sudo gitlab-runner install --user=gitlab-runner --working-directory=/home/gitlab-runner
sudo gitlab-runner start

# Register the runner
sudo gitlab-runner register

WSL-Specific Considerations

  1. Ensure that Windows Defender or other security software doesn't block GitLab Runner

  2. Configure WSL to maintain a persistent connection if needed with task scheduler:

# Create a scheduled task to keep WSL running (execute in PowerShell as Admin)
$action = New-ScheduledTaskAction -Execute "wsl.exe" -Argument "-- sleep infinity"
$trigger = New-ScheduledTaskTrigger -AtStartup
$settings = New-ScheduledTaskSettingsSet -AllowStartIfOnBatteries -DontStopIfGoingOnBatteries -ExecutionTimeLimit 0
Register-ScheduledTask -TaskName "Keep WSL Running" -Action $action -Trigger $trigger -Settings $settings -User "SYSTEM" -RunLevel Highest

NixOS Installation

NixOS offers a declarative approach to system configuration, making GitLab Runner setup reproducible and version-controlled.

NixOS Configuration

Add the following to your configuration.nix file:

{ config, pkgs, ... }:

{
  # Enable GitLab Runner service
  services.gitlab-runner = {
    enable = true;
    
    # Configure runners
    # You can add multiple runners with different configurations
    settings = {
      concurrent = 4;  # Number of concurrent jobs
      check_interval = 0;
    };
    
    # Define a runner
    runners = [
      {
        name = "nixos-runner";
        # Environment variables available to the build
        environment = [ "PATH=/run/wrappers/bin:/nix/var/nix/profiles/default/bin" ];
        # GitLab instance URL - replace with your instance
        url = "https://gitlab.example.com";
        # Registration token from GitLab
        registrationConfigFile = "/var/lib/gitlab-runner/registration-token";
        # Runner executor
        executor = "shell";
        # Tags for job selection
        tagList = [ "nixos" "linux" ];
        # Run as unprivileged user
        runUntagged = true;
        # Whether to run untagged jobs
        protected = false;
      }
    ];
  };
  
  # Open necessary ports for GitLab communication
  networking.firewall.allowedTCPPorts = [ 9252 ];
  
  # Add the gitlab-runner user to docker group if using Docker executor
  users.users.gitlab-runner.extraGroups = [ "docker" ];
  virtualisation.docker.enable = true;  # If using Docker executor
}

Create the registration token file:

sudo mkdir -p /var/lib/gitlab-runner
echo "YOUR_RUNNER_REGISTRATION_TOKEN" | sudo tee /var/lib/gitlab-runner/registration-token
sudo chmod 600 /var/lib/gitlab-runner/registration-token

Apply the configuration:

sudo nixos-rebuild switch

Real-Life Scenarios (2025 Best Practices)

Scenario 1: Multi-Environment CI/CD Pipeline for Microservices

Challenge: A team manages a microservices architecture spanning development, staging, and production environments across multiple cloud providers.

Solution with GitLab Runner:

  1. Environment-Specific Runners:

# .gitlab-ci.yml
stages:
  - test
  - build
  - deploy-dev
  - deploy-staging
  - deploy-prod

variables:
  DOCKER_REGISTRY: "${CI_REGISTRY}"
  
test:
  stage: test
  image: node:18-alpine
  tags:
    - docker
  script:
    - npm ci
    - npm run test
  cache:
    paths:
      - node_modules/

build:
  stage: build
  image: docker:24.0
  tags:
    - docker
  services:
    - docker:24.0-dind
  script:
    - docker build -t ${DOCKER_REGISTRY}/${CI_PROJECT_PATH}:${CI_COMMIT_SHA} .
    - docker push ${DOCKER_REGISTRY}/${CI_PROJECT_PATH}:${CI_COMMIT_SHA}
  only:
    - main
    - tags

deploy-dev:
  stage: deploy-dev
  image: 
    name: bitnami/kubectl:1.28
    entrypoint: [""]
  tags:
    - kubernetes
    - dev
  script:
    - echo "${KUBE_CONFIG_DEV}" > kubeconfig
    - export KUBECONFIG=./kubeconfig
    - envsubst < kubernetes/dev.yaml | kubectl apply -f -
  environment:
    name: development
    url: https://dev.example.com
  only:
    - main

# Similar configurations for staging and production stages with different tags
  1. Runner Configuration:

# config.toml for dedicated environment runners
concurrent = 10
check_interval = 0

[[runners]]
  name = "dev-kubernetes-runner"
  url = "https://gitlab.example.com"
  token = "TOKEN"
  executor = "kubernetes"
  [runners.kubernetes]
    namespace = "gitlab-runners"
    image = "ubuntu:22.04"
    service_account = "gitlab-runner"
    service_account_overwrite_allowed = "gitlab-runner"
    pod_annotations_overwrite_allowed = "*"
    cpu_limit = "1"
    memory_limit = "1Gi"
    helper_cpu_limit = "200m"
    helper_memory_limit = "256Mi"
    poll_interval = 5
    resource_availability_check_interval = 1

[[runners]]
  name = "prod-kubernetes-runner"
  url = "https://gitlab.example.com"
  token = "TOKEN"
  executor = "kubernetes"
  tags = ["kubernetes", "production"]
  [runners.kubernetes]
    namespace = "gitlab-runners-prod"
    # Enhanced security for production
    privileged = false
    # Production runner with higher resource limits
    cpu_limit = "2"
    memory_limit = "4Gi"
    # Use node selector for production grade nodes
    node_selector = "env=production"
    service_account = "gitlab-runner-prod"

Scenario 2: Secure Infrastructure as Code Deployment

Challenge: Securely deploy infrastructure changes with appropriate approval gates and compliance checks.

Solution with GitLab Runner:

# .gitlab-ci.yml for Terraform deployment
stages:
  - validate
  - plan
  - apply
  - verify

variables:
  TF_ROOT: ${CI_PROJECT_DIR}/terraform
  TF_STATE_NAME: ${CI_PROJECT_PATH_SLUG}
  TF_CACHE_KEY: ${CI_COMMIT_REF_SLUG}
  TF_VAR_environment: ${CI_ENVIRONMENT_NAME}

# Include secure scanning templates
include:
  - template: Security/SAST.gitlab-ci.yml
  - template: Security/Secret-Detection.gitlab-ci.yml
  - template: Jobs/Infrastructure-as-Code-Security.gitlab-ci.yml

validate:
  stage: validate
  image: hashicorp/terraform:1.7
  tags:
    - docker
    - secure
  script:
    - cd ${TF_ROOT}
    - terraform init
    - terraform validate
    - terraform fmt -check
  cache:
    key: ${TF_CACHE_KEY}
    paths:
      - ${TF_ROOT}/.terraform

terraform-plan:
  stage: plan
  image: hashicorp/terraform:1.7
  tags:
    - docker
    - secure
  script:
    - cd ${TF_ROOT}
    - terraform init
    - terraform plan -out=tfplan
  artifacts:
    paths:
      - ${TF_ROOT}/tfplan
    expire_in: 1 week
  cache:
    key: ${TF_CACHE_KEY}
    paths:
      - ${TF_ROOT}/.terraform
  rules:
    - if: $CI_COMMIT_BRANCH == "main"

# The apply job requires approval before execution (2025 best practice)
terraform-apply:
  stage: apply
  image: hashicorp/terraform:1.7
  tags:
    - docker
    - secure
  script:
    - cd ${TF_ROOT}
    - terraform init
    - terraform apply -auto-approve tfplan
  dependencies:
    - terraform-plan
  when: manual
  environment:
    name: production
    url: https://console.example.cloud/projects/${TF_VAR_project_id}
  rules:
    - if: $CI_COMMIT_BRANCH == "main"
  cache:
    key: ${TF_CACHE_KEY}
    paths:
      - ${TF_ROOT}/.terraform

# Verify infrastructure after deployment
verify-infrastructure:
  stage: verify
  image: python:3.12-alpine
  tags:
    - docker
  script:
    - pip install pytest boto3 azure-identity azure-mgmt-resource google-cloud-resource-manager
    - cd ${CI_PROJECT_DIR}/tests
    - python -m pytest -xvs infra_tests.py
  dependencies:
    - terraform-apply
  rules:
    - if: $CI_COMMIT_BRANCH == "main"
      when: on_success

Scenario 3: Auto-Scaling Cloud Runners for Cost Optimization

Challenge: Managing pipeline costs while ensuring sufficient capacity for peak times.

Solution with GitLab Runner on AWS/Azure/GCP:

AWS Auto-Scaling Configuration (Terraform)

# AWS auto-scaling GitLab Runners with Terraform

resource "aws_launch_template" "gitlab_runner" {
  name_prefix   = "gitlab-runner-"
  image_id      = "ami-0123456789abcdef0" # Amazon Linux 2 AMI
  instance_type = "c6a.large"  # AMD-based instances for better cost/performance
  
  user_data = base64encode(<<-EOF
    #!/bin/bash
    yum update -y
    amazon-linux-extras install docker -y
    systemctl enable docker
    systemctl start docker
    
    # Install GitLab Runner
    curl -L "https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.rpm.sh" | bash
    yum install -y gitlab-runner
    
    # Register the runner with auto-scaling configuration
    gitlab-runner register \
      --non-interactive \
      --url "https://gitlab.example.com/" \
      --registration-token "${var.runner_token}" \
      --executor "docker+machine" \
      --docker-image "alpine:latest" \
      --description "Auto-scaling Runner" \
      --tag-list "aws,auto-scale" \
      --run-untagged="true" \
      --locked="false" \
      --access-level="not_protected" \
      --docker-privileged \
      --docker-volumes "/var/run/docker.sock:/var/run/docker.sock" \
      --machine-idle-nodes 1 \
      --machine-idle-time 1800 \
      --machine-max-builds 100 \
      --machine-machine-driver "amazonec2" \
      --machine-machine-name "gitlab-docker-machine-%s" \
      --machine-machine-options "amazonec2-instance-type=c6a.large" \
      --machine-machine-options "amazonec2-region=${var.aws_region}" \
      --machine-machine-options "amazonec2-vpc-id=${var.vpc_id}" \
      --machine-machine-options "amazonec2-subnet-id=${var.subnet_id}" \
      --machine-machine-options "amazonec2-use-private-address=true" \
      --machine-machine-options "amazonec2-security-group=${var.security_group}" \
      --machine-machine-options "amazonec2-tags=runner,gitlab,${var.environment}"
  EOF
  )
  
  iam_instance_profile {
    name = aws_iam_instance_profile.gitlab_runner.name
  }
  
  network_interfaces {
    associate_public_ip_address = true
    security_groups             = [var.security_group_id]
  }
  
  tag_specifications {
    resource_type = "instance"
    tags = {
      Name = "GitLab Runner"
      Environment = var.environment
      ManagedBy = "Terraform"
    }
  }
}

resource "aws_autoscaling_group" "gitlab_runner" {
  desired_capacity    = 1
  max_size            = 5
  min_size            = 1
  vpc_zone_identifier = var.subnet_ids
  
  launch_template {
    id      = aws_launch_template.gitlab_runner.id
    version = "$Latest"
  }
  
  tag {
    key                 = "Name"
    value               = "GitLab Runner"
    propagate_at_launch = true
  }
  
  # Scale based on average CPU utilization
  target_tracking_configuration {
    predefined_metric_specification {
      predefined_metric_type = "ASGAverageCPUUtilization"
    }
    target_value = 60.0
  }
}

Scenario 4: Secure GitLab Runners for Sensitive Workloads

Challenge: Running CI/CD pipelines for high-security environments with strict compliance requirements.

Solution:

  1. Configure isolated, dedicated runners with enhanced security settings:

# config.toml for secure runners
concurrent = 4
check_interval = 0

[[runners]]
  name = "secure-compliant-runner"
  url = "https://gitlab.example.com"
  token = "TOKEN"
  executor = "docker"
  [runners.docker]
    tls_verify = true
    image = "alpine:3.19"
    privileged = false
    disable_entrypoint_overwrite = true
    oom_kill_disable = false
    disable_cache = true
    volumes = ["/cache"]
    shm_size = 0
    network_mode = "bridge"
  [runners.cache]
    Type = "s3"
    Shared = false
    [runners.cache.s3]
      ServerAddress = "s3.amazonaws.com"
      AccessKey = "${S3_ACCESS_KEY}"
      SecretKey = "${S3_SECRET_KEY}"
      BucketName = "gitlab-runner-cache"
      BucketLocation = "us-east-1"
      Insecure = false
      Encrypted = true
  1. Pipeline configuration for sensitive workloads:

# .gitlab-ci.yml for sensitive workloads
stages:
  - security-scan
  - test
  - build
  - deploy

# Include security scanning templates
include:
  - template: Security/SAST.gitlab-ci.yml
  - template: Security/Secret-Detection.gitlab-ci.yml
  - template: Security/Dependency-Scanning.gitlab-ci.yml
  - template: Security/Container-Scanning.gitlab-ci.yml
  - template: Security/License-Scanning.gitlab-ci.yml

variables:
  # Enhance security features
  SECURE_ANALYZERS_PREFIX: "registry.gitlab.com/security-products"
  SCAN_KUBERNETES_MANIFESTS: "true"

# Interactive Application Security Testing
dast:
  stage: security-scan
  tags:
    - secure
    - compliant
  image:
    name: "${SECURE_ANALYZERS_PREFIX}/dast:latest"
  variables:
    DAST_WEBSITE: https://staging.example.com
    DAST_FULL_SCAN_ENABLED: "true"
    DAST_ZAP_USE_AJAX_SPIDER: "true"
    DAST_REQUEST_HEADERS: "Cache-Control: no-cache,User-Agent: DAST/1.0"
    # Add authentication if needed
    # DAST_AUTH_URL: https://staging.example.com/login
    # DAST_USERNAME: ${SECURITY_USERNAME}
    # DAST_PASSWORD: ${SECURITY_PASSWORD}
  allow_failure: false
  artifacts:
    reports:
      dast: gl-dast-report.json

# Secure build process
build:
  stage: build
  tags:
    - secure
    - compliant
  image: docker:24.0
  services:
    - name: docker:24.0-dind
      command: ["--tls=true", "--tlscert=/certs/server.pem", "--tlskey=/certs/server-key.pem"]
  script:
    # Sign the build for supply chain security
    - apk add --no-cache cosign
    - docker build -t ${CI_REGISTRY_IMAGE}:${CI_COMMIT_SHA} .
    - echo "${CI_REGISTRY_PASSWORD}" | docker login -u ${CI_REGISTRY_USER} --password-stdin ${CI_REGISTRY}
    - docker push ${CI_REGISTRY_IMAGE}:${CI_COMMIT_SHA}
    - cosign sign --key ${COSIGN_KEY} ${CI_REGISTRY_IMAGE}:${CI_COMMIT_SHA}
  artifacts:
    reports:
      container_scanning: gl-container-scanning-report.json

# Deploy using zero-trust principles
deploy:
  stage: deploy
  tags:
    - secure
    - compliant
  image: 
    name: bitnami/kubectl:1.28
    entrypoint: [""]
  variables:
    VERIFY_TLS: "true"
  script:
    # Use short-lived credentials
    - export TOKEN=$(curl -H "X-Vault-Token: $VAULT_TOKEN" -X POST $VAULT_ADDR/v1/auth/kubernetes/login -d '{"role":"gitlab-deploy","jwt":"'$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)'"}' | jq -r '.auth.client_token')
    # Get environment-specific configs from vault
    - export KUBECONFIG=$(curl -H "X-Vault-Token: $TOKEN" -X GET $VAULT_ADDR/v1/secret/data/kubernetes/config | jq -r '.data.data.kubeconfig' > kubeconfig && echo ./kubeconfig)
    # Verify image signature before deployment
    - cosign verify --key ${COSIGN_PUBLIC_KEY} ${CI_REGISTRY_IMAGE}:${CI_COMMIT_SHA}
    # Deploy with strict security context
    - envsubst < kubernetes/deploy-secure.yaml | kubectl apply -f -
  environment:
    name: production
    url: https://example.com
  when: manual

Best Practices for GitLab Runners (2025)

Security Best Practices

  1. Zero Trust Architecture:

    • Implement Workload Identity Federation instead of static tokens

    • Use short-lived credentials for cloud resource access

    • Verify all artifacts with digital signatures

  2. Runner Isolation:

    • Use dedicated runners for sensitive projects

    • Implement network segmentation for runner environments

    • Utilize container sandboxing technologies (gVisor, Kata Containers)

  3. Supply Chain Security:

    • Sign all container images with Cosign or Notary

    • Implement Software Bill of Materials (SBOM) generation

    • Use trusted base images with vulnerability scanning

Performance Optimization

  1. Smart Caching Strategies:

    • Use distributed caching systems (S3, GCS, Azure Blob)

    • Implement layer caching for Docker builds

    • Cache package manager dependencies effectively

  2. Resource Allocation:

    • Set appropriate resource limits based on job requirements

    • Utilize spot/preemptible instances for cost-efficiency

    • Implement auto-scaling based on workload patterns

  3. Containerized Execution:

    • Use slim, purpose-built containers for jobs

    • Implement multi-stage builds to reduce image size

    • Optimize dependency management for faster execution

Cost Optimization

  1. Intelligent Scaling:

    • Implement predictive auto-scaling based on historical patterns

    • Use spot instances with fallback mechanisms

    • Scale to zero for non-critical environments

  2. Resource Efficiency:

    • Tag runners for specific workloads to optimize resource use

    • Set job timeouts to prevent runaway processes

    • Implement job concurrency limits

  3. Multi-Cloud Strategy:

    • Distribute runners across cloud providers for cost arbitrage

    • Use runners in regions with lower costs

    • Implement FinOps practices with cost monitoring

Resilience and Reliability

  1. High Availability Setup:

    • Deploy runners across multiple availability zones

    • Implement circuit breakers for external dependencies

    • Use health checks and automatic remediation

  2. Failure Management:

    • Implement retry mechanisms for transient failures

    • Set up alerting for repeated job failures

    • Create runbooks for common runner issues

  3. Disaster Recovery:

    • Backup runner configurations regularly

    • Test recovery scenarios periodically

    • Document recovery procedures

Monitoring GitLab Runners

Key Metrics to Monitor

  1. System Resources:

    • CPU, memory, and disk usage

    • Network throughput and latency

    • Queue length and job wait time

  2. Job Performance:

    • Job execution time

    • Build success/failure rate

    • Cache hit/miss ratio

  3. Cost Metrics:

    • Runner uptime

    • Resource utilization efficiency

    • Job cost by project/branch

Monitoring Tools Integration

# prometheus.yml configuration
scrape_configs:
  - job_name: 'gitlab_runners'
    scrape_interval: 15s
    static_configs:
      - targets: ['gitlab-runner:9252']

Example Grafana dashboard query:

rate(gitlab_runner_jobs_total{status="success"}[5m])

Conclusion

GitLab Runner remains a critical component of modern CI/CD infrastructure in 2025. By following best practices for installation, configuration, security, and scaling, organizations can build resilient and efficient pipelines that support modern software delivery practices. The platform-specific installation guides and real-world scenarios provided here should help teams implement GitLab Runner effectively across different environments.

Additional Resources

PreviousGitLabNextReal-life scenarios

Last updated 8 days ago

🔄
Official GitLab Runner Documentation
GitLab Runner Security
Kubernetes Executor
Auto-scaling with Docker Machine